Методы определения ккм. Определение ккм в растворе пав с помощью карманного кондуктометра Ккм коллоидная химия

ОСНОВНЫЕ ФАКТОРЫ, ВЛИЯЮЩИЕ НА ККМ

1.строение углеводородного радикала в молекуле ПАВ;

2.характер полярной группы;

3.наличие в растворе электролитов;

4.температура.

Рассмотрим подробнее влияние каждого фактора.

1.Строение углеводородного радикала

Длина углеводородного радикала оказывает решающее действие на процесс мицеллообразования в водных растворах. Понижение энергии Гиббса системы в результате мицеллообразования тем больше, чем длиннее углеводородная цепь. Исследования показывают, что образование предмицеллярных ассоциатов наблюдается в поверхностно-активных электролитах с наличием в углеводородной цепи более четырех атомов углерода. Однако, в таких соединениях слабо выражено различие между гидрофильной и гидрофобной частями. В связи с этим энергия ассоциирования недостаточна, чтобы удержать молекулы от беспорядочного теплового движения и, тем самым, создать условия для мицеллообразования. Как правило, способность к мицеллообразованию свойственна молекулам ПАВ с длиной у/в радикала более 8-10 атомов углерода.

При равновесии химические потенциалы ПАВ в растворе m р и в мицелле m М равны и можно записать:

m 0 р + R Т l n ККМ = m 0 М +R Т l n а М (11.1)

Считая мицеллу фазой чистого ПАВ, можно принять его активность в мицелле равной единице. Тогда получим:

R Т l n ККМ = m 0 М - m 0 р (11.2).

Левая часть уравнения (11.2) представляет собой энергию переноса вещества из раствора, то есть энергию растворения. Известно, что энергия растворения соединений в воде уменьшается линейно с увеличением длины у/в радикала. Следовательно:

R Т l n ККМ = а – b n (11.3),

где а - постоянная, характеризующая энергию растворения функциональных групп, b - постоянная, характеризующая энергию растворения, приходящуюся на одну группу СН 2 , n - число групп СН 2 .

Для органической среды:

R Т l n ККМ = а + b n (11.4)

то естьпри увеличении длины у/в радикала повышается растворимость ПАВ и возрастает ККМ. Разветвленность, непредельность и циклизация у/в радикала уменьшает склонность к мицеллообразованию и увеличивают ККМ.

2.Характер полярной группы

Характер полярной группы играет существенную роль при мицеллообразовании в водных и неводных средах. Ее влияние на ККМ отражает параметра в уравнениях.

Рольгидрофильных групп в водных растворах ПАВ заключается в том, чтобы удерживать образующиеся ассоциаты в воде и регулировать их размер. Сферическая форма ионных мицелл устанавливается, если энергия ассоциирования у/в цепей достаточно большая и превышает энергию электростатического отталкивания между ионными группами.Гидратация противоионов, окружающих мицеллу, способствует отталкиванию, а менее гидратированные ионы легче адсорбируются на поверхности мицелл. В связи с этим наблюдается уменьшение ККМ и увеличение мицеллярной массы для катионных ПАВ в ряду Сl - < B r - < I - и анионных ПАВ в ряду N a + < K + < C s + .Наличие ионных концевых групп обеспечивает хорошую растворимость ПАВ в воде, поэтому для перехода ионногенных молекул в мицеллу требуется больше энергии, чем для образования мицелл из неинногенных молекул.

3.Влияние электролитов

Введение электролитов в водные растворы неионногенных ПАВ слабо влияет на ККМ и размер мицеллы. Для ионногенных ПАВ это влияние существенно. С ростом концентрации электролита мицеллярная масса ионногенных ПАВ растет. Влияние электролитов описывается уравнением:

l n ККМ = а - b n - k l n c (11.5)

а и b - постоянные, имеющиетот же физический смысл, что и в предыдущих уравнениях, k - константа, с - концентрация электролита.

В отсутствии электролитас=ККМ.

Введение неэлектролитов (органических растворителей) тоже приводит к изменению ККМ. При наличии солюбилизации устойчивость мицелл повышается, то есть уменьшается ККМ. Если молекулы растворителя не входят внутрь мицеллы, то они увеличивают ККМ.

Для регулирования свойств ПАВ применяют их смеси, в которых проявляются синергетические или антогонистические эффекты, то есть такие смеси могут иметь значительно более высокую или менее высокую мицеллообразующую, солюбилизирующую способности.

МЕТОДЫ ОПРЕДЕЛЕНИЯ ККМ

Методы определения ККМ основаны на регистрации резкого изменения свойств растворов ПАВ в зависимости от концентрации (например, поверхностного натяжения, мутности, эквивалентной электропроводности, осмотического давления, показателя преломления).

ГИДРОФОБНЫЕВЗАИМОДЕЙСТВИЯ И МОЮЩЕЕДЕЙСТВИЕ

Мы уже объяснили механизм гидрофобных взаимодействий с точки зрения термодинамики. Представляет интересобъяснение моющего действия растворов ПАВ. Под моющим действием подразумевают совокупность коллоидно-химических процессов, которые приводят к удалению загрязнений врастворе. Загрязнения представляют собой маслянистые продукты (животные жиры, жирные кислоты, нефтепродукты) в смеси с другими твердыми веществами минерального и органического происхождения.

Стадии моющего действия при удалении жировых загрязнений.

1.Первая стадия - это смачивание твердой поверхности, при этом происходит замена границ раздела загрязнение - воздух и твердая поверхность - воздух на границе раздела масло - вода (М - В) и твердая поверхность - вода (Т - В). Улучшение смачивания происходит в результате снижения поверхностного натяженияпри адсорбции ПАВ на границе раздела фаз.

2.На второй стадии моющего действия происходит отрыв частиц загрязнений. Для характеристики условий отрыва жировых загрязнений.Обозначим 12 = ТМ , 13 = МВ , и 23 = ТВ (где М - масляные загрязнения, В - вода, Т - твердая поверхность).

Изменение энергии Гиббса в случае преодоления адгезии масляных загрязнений:

D G В = (G В) 2 - (G В) 1 = - ( ТВ + МВ ) + ТМ (11.6) s МВ и твердого тела ТВ на границе с водой превышало ТМ. Этот процесс осуществляется в результате адсорбции коллоидных ПАВ. Таким образом, первая и вторая стадии моющего действия связаны с поверхностными свойствами коллоидных ПАВ.

За счет механического воздействия, например при стирке, можно усилить моющее действие, особенно в тех случаях, когдане происходит самопроизвольного нарушения адгезионного взаимодействия. В этом случае под действием ПАВ адгезия частиц загрязнений снижается, что способствует удалению их механическим путем.

3.Отличительные особенности коллоидных ПАВ наиболее ощутимы на 3 стадии моющего действия, которая заключается в удержании загрязнений в жидкой среде и в предотвращении их возможного оседания на обрабатываемую поверхность.

Удержание частиц в растворе определяется целым комплексом коллоидных свойств растворов ПАВ.Прежде всего, происходит диспергирование частиц на более мелкие. Комки твердых загрязнений в результате пептизации переходят во взвешенное состояние с одновременном дроблением крупных частиц на более мелкие или разрушением агрегатов. Затем на поверхности частиц образуются адсорбционно-сольватные слои, которые препятствуют агрегации частиц и удерживают их во взвешенном состоянии, т.е. происходит образование стабилизированной суспензии. Пептизация с одновременным суспендирующим действием коллоидных ПАВ способствует удержанию твердых загрязнений.

В случае жидких жировых загрязнений возможно самопроизвольное диспергирование до мелких капель, когда дисперсная система является лиофильной. Каплимасляныхзагрязненийобразуютпрямуюэмульсию М ¤ В, а адсорбционные слои ПАВспособствуют удержанию их в водной среде. Кроме того, особенно для лиофобных систем, масляные загрязнения удерживаются в объеме водной среды за счет солюбилизации. По отношению к твердым загрязнениям коллоидные ПАВ способны обеспечивать стабильность суспензий и способствовать суспендированию.

Коллоидные ПАВ являются еще и пенообразователями. К пузырькам пен прилипают частицы загрязнений, и происходит удержание частиц загрязнений в растворе.

В целом именно на третьей стадии моющего действия в полной мере проявляются объемные свойства растворов коллоидных ПАВ.

В основе моющего действия лежат следующие коллоидно-химические процессы : смачивание, адгезия, адсорбция, пептизация, солюбилизация, эмульгирование, суспендирование, пенообразование.

На данный момент кассовые аппараты делятся на несколько подвидов в зависимости от того, в какой сфере они применяются и по какой конструкции выполнены. По сфере применения контрольно-кассовые машины делятся на торговые, для сферы услуг, для гостиниц, а также для продажи нефтепродуктов. Если говорить о конструкции, то данный прибор разделяется на автономные, фискальные, активные системные, пассивные.

Классификация по конструкции

Что такое ККМ, рассмотрим немного позже, а пока следует заметить то, как именно разделяются машины по конструкции:

  1. Автономные приборы имеют расширенный функционал. Они являются дополнительными устройствами по вводу-выводу. К таким можно отнести портативные аппараты, которые способны работать без постоянной подачи электропитания. Перед использованием такой системы необходимо ознакомиться с инструкцией, которая идет в комплекте.
  2. Следующий вид классификации - это фискальные регистраторы. Они являются приборами, которые могут функционировать только в комплекте с другой компьютерно-кассовой техникой. Все данные они получают посредством канала связи.
  3. Следующий вид - активные системные ККМ. Что такое? Данный прибор может функционировать в компьютерно-кассовой системе, максимально управляя ее работой. К таким видам техники относятся терминалы типа POS.
  4. Пассивные системы кассовой техники представляют собой машины, которые способны работать в компьютерно-кассовой системе, но управлять ее работой они не имеют возможности.

Касса и ККМ

Кассовый аппарат и контрольно-кассовая машина - это два разных прибора. В народе оба варианта техники называют одинаково, но эти понятия имеют совершенно разные значения.

Кассой называется прибор, который может совершать любые наличные операции. Речь идет и о доходах, и о расходах. Все операции, которые происходят с наличными, должны происходить на кассе. Как правило, у частных предприятий и организаций всегда имеются наличные операции, поэтому кассовый аппарат нужен практически всем.

Компьютерно-кассовая машина должна использоваться во всех случаях, когда человек выбрал при создании частной деятельности систему налогообложения ЕНВД. В таком случае покупать и использовать кассовый аппарат нет смысла. В таких ситуациях используется БСО.

Покупка ККМ

Закон о применении ККМ регламентирует ситуации, в которых необходимо приобретать это устройство. Предварительно (до покупки аппарата) следует обратиться в налоговую инспекцию. Она позволит точно подобрать устройство, которое будет идеально подходить под ваш вид деятельности. Нужно заметить, что если устройство не внесено в Госреестр, то пользоваться им запрещено. Следует знать, какая модель компьютерно-кассовой машины будет наиболее подходящей и сможет соответствовать всем параметрам.

Речь идет о месте установки, микроклимате и интенсивности загруженности аппарата. При выборе нужно заметить тот факт, сколько имеется секций и отделов на предприятии, которые будут проходить через определенную кассовую машину. Техническое обслуживание ККМ следует проводить хотя бы раз в год для того, чтобы обезопасить себя от неточностей в расчетах.

Также следует при покупке обратить внимание на то, какая чековая лента будет использоваться, есть ли необходимость в синхронизации с компьютером, принтером или весами. После выбора подходящей модели нужно обратиться в центр обслуживания и приобрести товар. Там выдадут гарантийный талон и документы, разрешающие ввести в производство машину. Владельцу остается обратиться в налоговую службу за регистрацией прибора.

При покупке техники б/у необходимо обратить внимание на внешний вид прибора. Помимо этого, должны быть документы, которые подтверждают регистрацию устройства в налоговой службе. На данный вид техники должны быть все бумаги вплоть до договора о купле-продаже.

Регистрация в налоговой

Как уже было сказано выше, контрольно-кассовую машину (ККМ) необходимо зарегистрировать в налоговой службе. Для этого следует обратиться в службу по месту прописки либо же выбрать посредника, который является специальной организацией. Она способна по доверенности выполнить всю работу за владельца предприятия.

Специалист должен принести в налоговую все документы, которые необходимы для регистрации. Речь идет о бумаге, подтверждающей просьбу о постановке на учет машины в налоговой. Необходимо предоставить ИНН, кассовую книгу, журнал кассира, а также документ, который подтверждает вызов специалиста по обслуживанию. Также следует приложить заявление, которое будет заранее заполнено. Речь идет о документе, который является просьбой на регистрацию машины.

Также следует предоставить договор о вводе машины в эксплуатацию, инструкцию к ККМ, а также пломбу, карточку регистрации и договор на техобслуживание. Дополнительно следует предоставить паспорт заявителя и сам прибор. Поставить устройство на учет необходимо до того как начнет работать на нем операционист. Иначе это будет считаться нарушением.

Обслуживание

Что такое ККМ, уже должно быть понятно, но как же обслуживать его? Все работы, которые касаются технической стороны приспособления, следует поручать только специалистам. При этом они должны быть работниками того центра, с которым был подписан договор на обслуживание. Каждая станция обслуживания наклеивает на приспособление голограмму. На ней изображен круг, в котором нарисован человек у кассового аппарата. С внутренней стороны этой наклейки имеется надпись “Сервисное обслуживание” и год постановки на учет устройства.

Представитель центра проводит обслуживание в соответствии с графиком, который был составлен заранее. При этом не имеет значения, в каком состоянии находится устройство. Происходить обслуживание должно не реже раза в месяц. Специалист должен проверить то, как работает прибор, его интерфейс, печатает ли чеки, также при необходимости следует смазать части аппарата и заменить детали питания. Помимо этого, специалист должен провести обслуживание, если поступал аварийный вызов. После того как будут исправлены все проблемы, сотруднику необходимо опломбировать кассовый аппарат и записать все данные в журнал учета.

Нужно заметить, что межремонтная настройка ККМ должна осуществляться непосредственно самим кассиром. Речь идет о внешнем осмотре, чистке кассовой техники, замене картриджа, проверке работоспособности электропривода. К чистке следует отнести удаление пыли кистью или при помощи продувания со всех доступных частей кассового аппарата. Все устройства должны проходить проверку на работоспособность в январе или феврале. Это прописано в законодательстве.

Пользоваться приборами, которые не имеют пломбы или она повреждена, а также если нет маркировки от производителя, запрещено. Нельзя также использовать неисправную технику. К серьезным проблемам, судя по положению в законодательстве России, следует отнести неразборчивую печать чека ККМ. Сюда же стоит прибавить отсутствие реквизитов из-за таких неполадок. Также неправильное выполнение операций и невозможность получения данных из фискальной памяти запрещает применять прибор. Это следует учитывать при работе.

Работа на ККМ

Перед тем как начать работать на ККМ в розничной торговле, необходимо выполнить ряд манипуляций. Операционист должен ознакомиться с правилами эксплуатации и подписать соответствующий документ, который будет подтверждать это.

Помимо этого человеку все равно необходимо прочесть инструкцию, для того чтобы понять, как пользоваться компьютерно-кассовым аппаратом. Не следует забывать, что вся материальная ответственность при недочетах в производственном цикле будет лежать именно на кассе. Каждый день кассиру нужно будет вносить в журнал данных информацию о полученной выручке.

Не стоит забывать, что компьютерно-кассовая машина должна быть настроена на печать реквизитов в чеках. Этим вопросом будет заниматься не кассир, а специалист из центра обслуживания. В инструкции к ККМ все подробно описано. Среди обязательных реквизитов следует выделить:

  • ИНН предприятия;
  • его название;
  • заводской номер аппарата;
  • порядковый номер напечатанного чека;
  • общую сумму к оплате;
  • наличие реквизита фискального режима;
  • дата и время покупки.

К необязательным полям относят отделы, вывод об уплате налога в чеке, а также пароль кассира.

Перед началом работы в кассовую машину необходимо вставить ленту, а после этого включить устройство и проверить дату. Далее необходимо провести один чек, чтобы понять, хорошее ли качество печати. Для этого печатается нулевой чек или же Х-отчет. Кассовые чеки следует выдавать при оплате услуг и продуктов, а не вместе с выдачей товаров.

Что необходимо знать и выполнять кассиру

С каждым днем требования к квалификации кассира повышаются. На данный момент человеку, который работает на данной должности, необходимо хорошо знать инструкцию к кассовому аппарату и правила его эксплуатации. Операционист должен быть способен выполнять свои обязанности на разных машинах, знать ассортимент товаров и их стоимость. Также он должен уметь различать признаки неисправности прибора.

Если таковые появляются, необходимо сообщать о них руководству. Если неисправность небольшая, то следует самим устранять ошибки. Контролер-кассир должен уметь безопасно обслуживать покупателей, следить за тем, чтобы ремонт и обслуживание устройства проводилось вовремя, помимо этого, ему следует уметь различать поддельные купюры от настоящих и знать характерные особенности всех банковских карт.

В конце дня кассир-операционист должен заполнять журнал и снимать Z-отчет. Таким образом он выдает выручку за весь день и закрывает смену. После того как будет снят Z-отчет, на кассе ничего в этот день пробить будет уже нельзя. Все модели ККМ работают по такой схеме.

Взаимодействие 1С и ККМ

Иногда, в зависимости от вида деятельности предприятия, может существовать необходимость в использовании различных приборов - начиная от ККМ и заканчивая сканером штрих-кодов. Для того чтобы не приобретать большое количество приспособлений, можно купить комплексное, которое работает на POS-терминале либо же установить программу-драйвер ККМ. С его помощью они корректно работают, обмениваясь данными.

Задачей совместной работы кассового аппарата с терминалом или драйвером становится взаимодействие с 1С. Если предприятие, например, работает с совершением сделок купли-продажи, то, в свою очередь, программа 1С предоставляет кассовой машине абсолютно все данные о товарах, а также записывает всю информацию о продажах. Довольно часто перед началом смены выгружается отчет из справочника товаров. Из 1С выгружаются все остатки продуктов, а после завершения смены загружается итог по всей смене. Обзор ККМ должен включать описание такого вида взаимодействия.

Многие предприятия используют приборы комплексно. Они способны выполнять функции ККМ и 1С. Благодаря этому можно автоматизировать операции. К примеру, на склад поступает товар. И его необходимо переместить с одного склада на другой или же поставить на реализацию. Все это может сделать устройство. Помимо этого, довольно легко при помощи такого прибора проводить инвентаризацию, возвращать поставщику или забирать у покупателя уже проданный товар, а также совершать оптовую продажу.

Модели ККМ

Что такое ККМ, уже разъяснили, а какие же модели самые популярные? Среди всех моделей ККМ, которые выпускаются и зарегистрированы в реестре России, имеются наиболее популярные приспособления.

Например, кассовый аппарат АМС-100K будет удобным в сфере мелкорозничной продажи. В данном аппарате имеется специальный ящик, в который можно класть купюры, а функционал позволяет подключить сканер штрих-кодов.

Pos-терминал EasyPos, который называется Optima имеет небольшие габариты, если сравнивать с предыдущей моделью. Данная система отлично подходит для торговых точек, которые имеют небольшой объем продаж, а также для кафе.

“Меркурий-100K” является небольшим аппаратом, который сможет автоматизировать процесс продаж.

ККМ и налогообложение

Многие виды ККМ используются в том случае, если компания не является плательщиком ЕНВД. Дело в том, что в таком режиме работы налог рассчитывается не исходя из суммы дохода, а из размера торговой площади. Соответственно, люди, которые работают по такой схеме, должны обязательно предоставлять бланки строгой отчетности. Таковой можно назвать квитанцию, чек или любой другой документ, который подтверждает оплату от покупателя.

В таком случае используется БСО. На этом приборе должны быть указаны наименование документа, номер и серия, имя владельца, название самой организации, виды предоставляемых услуг, общая стоимость, дата, подпись лица, который проводил операцию, печать данной фирмы, ИНН. Изготавливать БСО исполнитель не имеет права.

Во многих видах деятельности можно не использовать ни ККМ, ни БСО. В таком случае, как правило, люди занимаются продажей газет, журналов в киосках, учитывая, что их доля всего лишь 50%. Также подобными являются организации, которые продают талоны для проезда в транспорте, обеспечивают питание школьников и рабочих, торгуют на выставочных комплексах, ярмарках и рынках. Также речь идет о мелкорозничной торговле из корзин. Не нужно использовать данные приспособления при продаже через киоски напитков и мороженого. Также в этот список вносится торговля из цистерны молоком, пивом и рыбой.

Патентная система налогообложения

Используя патентную систему налогообложения, частное предприятие может проводить безналичный и наличный расчет, не применяя ККМ. В таком случае необходимо покупателю выдать документ, который будет подтверждать факт приема денег. Компания, которая работает на УСН, должна при продаже товара или осуществлении услуги выдать человеку кассовый чек. Если клиентом является юридическое лицо или предприниматель, то имеется небольшой нюанс.

Продавец должен выдавать и чек ККМ, и приходной ордер. Проводить расчеты можно даже при помощи электронных денег. В таком случае необходимо заключить договор с оператором, который предоставляет валюту. Клиент переводит деньги оператору, а тот зачисляет средства на счет. Однако таким образом между юридическими лицами и индивидуальными предпринимателями рассчитываться нельзя.

Снятие ККМ с учета

Налоговая может снять с учета компьютерно-кассовую машину, если прекращается деятельность, которая связана с денежными расчетами, меняется место использования и следует перерегистрировать устройство в другой налоговой службе, если машина неисправна, исключена из реестра, истек срок службы (7 лет), и даже если меняется формат работы предприятия.

Цель работы: Определение критической концентрации мицеллообразования по зависимости поверхностного натяжения растворов ПАВ от концентрации.

Краткое теоретическое введение

Наиболее эффективные поверхностно-активные вещества (ПАВ) имеют дифильное строение молекул. Этот термин означает, что часть молекулы имеет высокое сродство к воде и другим полярным растворителям, то есть является гидрофильной, тогда как другая часть той же молекулы имеет высокое сродство к неполярным растворителям и является липофильной. По отношению к воде липофильность эквивалентна гидрофобности. Гидрофобной частью является углеводородный радикал, который должен включать от 8 до 20 атомов углерода чтобы молекула имела действительно высокую поверхностную активность. Гидрофильной частью является полярная группа, способная диссоциировать на ионы в случае ионогенных ПАВ или неспособная диссоциировать в случае неионогенных ПАВ. Часто под термином ПАВ подразумеваются вещества именно с таким строением, хотя более общее определение ПАВ – это вещества, снижающие поверхностное натяжение раствора независимо от того, какое они имеют строение и сколько атомов углерода содержат в цепи.

Дифильное строение молекул является причиной ряда уникальных свойств. ПАВ легко адсорбируются на любых поверхностях раздела фаз. При этом гидрофильные части молекул ориентируются в сторону более полярной фазы, а гидрофобные цепи располагаются в неполярной фазе. Адсорбция обычно является обратимой и поэтому может быть охарактеризована химическим равновесием. Обозначив молекулу ПАВ символом A и молекулу растворителя – воды W, равновесие адсорбции можно записать в виде:

A + W(адсорб.) A(адсорб.) + W (5.1)

где (адсорб.) означает нахождение молекулы в адсорбционном слое.

В объёме раствора, независимо от присутствия или отсутствия поверхностей раздела фаз, молекулы ПАВ находятся в виде отдельных молекул (то есть в молекулярно-дисперсном состоянии), но могут также объединяться между собой с образованием коллоидных частиц, находящихся в равновесии с молекулярно-дисперсным ПАВ. Такие частицы принято называть мицеллами. При невысокой ионной силе водного раствора мицеллы имеют шарообразную форму и состоят из молекул ПАВ, гидрофильные группы которых находятся на поверхности мицеллы и контактируют с растворителем, а гидрофобные цепи ориентированы внутрь мицеллы и образуют её ядро, изолированное гидрофильной поверхностью от воды (см. рис. 7.2 и 7.3). В отсутствии других липофильных компонент размер мицелл определяется длиной углеводородного радикала, и для данного ПАВ может колебаться в сравнительно небольших пределах. У большинства ПАВ средний радиус сферических мицелл составляет от 1 до 10 нм. Число молекул ПАВ, образующих мицеллу, принято называть числом агрегации мицеллы. Это число определяется необходимостью образовать замкнутую сферу, поверхность которой состоит только из гидрофильных групп. В большинстве случаев оно составляет 50 – 100.

Движущей силой мицеллообразования являются так называемые гидрофобные взаимодействия, которые проявляются при растворении ПАВ в полярных растворителях. В частности, в воде молекулы растворителя взаимодействуют между собой с помощью водородных связей. Появление в воде протяжённых углеводородных радикалов приводит к нарушению кооперативного водородного связывания между молекулами растворителя, что является энергетически не выгодным, так как не компенсируется сольватацией углеводородных радикалов. Таким образом, в энергетическом отношении гидрофобные взаимодействия объясняются не столько взаимодействиями между углеводородными цепями в ядре мицеллы, сколько энергетической выгодностью взаимодействий молекул полярного растворителя между собой за пределами мицеллы. Аналогичным образом, при растворении ПАВ в неполярном растворителе можно говорить о гидрофильных взаимодействиях, суть которых состоит в энергетической невыгодности контактов гидрофильных групп ПАВ с молекулами неполярного растворителя. Результатом этого является образование так называемых обратных мицелл, ядро которых образовано гидрофильными группами молекул ПАВ и другими полярными молекулами (если они присутствует), а внешняя поверхность – липофильными углеводородными цепями.

Мицеллообразование зависит от концентрации ПАВ в растворе. Для данного ПАВ, при данной температуре, существует определённая концентрация, ниже которой весь ПАВ находится в молекулярно-дисперсном состоянии, и выше которой образуются мицеллы, находящиеся в равновесии с молекулярно-дисперсным ПАВ. Эту концентрацию называют критической концентрацией мицеллообразования (ККМ). Поскольку размер мицелл превышает 1 нм, растворы ПАВ с концентрацией выше ККМ являются коллоидными. Их принято относить к классу лиофильных коллоидов, то есть таких, которые образуются самопроизвольно и являются термодинамически равновесными.

Существуют две теории мицеллообразования. В одной из них, называемой псевдофазной теорией, мицеллы рассматриваются как частицы отдельной фазы, которые, несмотря на очень высокую дисперсность, являются термодинамически стабильными благодаря очень низкому межфазному натяжению на границе раздела мицелла/раствор. Мицеллообразование рассматривается как образование новой фазы, тогда как ККМ рассматривается как растворимость этой фазы. При концентрации ниже ККМ растворы являются ненасыщенными; при концентрации равной ККМ они являются насыщенным, а при концентрации выше ККМ они представляет собой гетерогенную систему, состоящую из насыщенного раствора с концентрацией молекулярно-дисперсного ПАВ равной ККМ и коллоидных частиц другой фазы, включающей весь ПАВ избыточный по отношению к ККМ.

В альтернативной теории, которую иногда называют квазихимической, растворы ПАВ рассматриваются как гомогенные, а мицеллообразование объясняется равновесием вида

nA An (5.2)

где An - мицелла с числом агрегации n .

Равновесия такого типа известны в химии как реакции ассоциации. (По этой причине коллоидные ПАВ называют также "ассоциативными коллоидами"). Хорошо известным примером является ассоциация уксусной кислоты

2СH 3 COOH (СH 3 COOH)2 (5.3)

которая происходит благодаря образованию сильных водородных связей между гидроксильной группой С–ОН одной молекулы и окси-группой С=О другой. Однако большинство таких реакций характеризуются числом агрегации 2, в отличие от мицеллообразования, при котором n = 50-100.

Чтобы понять как эта теория объясняет существование ККМ, необходимо рассмотреть математический аспект равновесия (5.2). В пренебрежении коэффициентами активности это равновесие можно описать константой:

где скобки означают равновесную концентрацию в молярной шкале. Если весь ПАВ находится в виде либо молекул А , либо мицелл An , общая аналитическая концентрация ПАВ в растворе, С , равна сумме

С = [A ] + n [An ] (5.5)

Удобно рассматривать долю общей концентрации ПАВ, приходящуюся на мицеллы:

x = n [An ]/С (5.6)

Тогда равновесные концентрации можно записать в виде

[An ] = /n , и [A ] = (1– x)C

откуда следует

(5.7)

Это уравнение невозможно решить аналитически относительно x из-за высокой степени n , однако его можно решить относительно С:

(5.8)

и вычислить С для любого значения x . Рис. 5.1 а) показывает результаты вычислений для n = 2 и 100 при некоторых произвольных константах равновесия. Рис. 5.1 б) показывает те же результаты в области низких концентраций. Можно видеть, что при n = 2 доля молекул А в составе димеров А 2 возрастает с ростом общей концентрации постепенно, без видимых особенностей на кривой. При n = 100, агрегированные частицы А 100 практически отсутствуют при концентрациях менее ~ 0.09 ммоль/л (9×10 –5 моль/л), но появляются и быстро увеличиваются по своему содержанию в узком интервале концентраций, прилегающем к 0.09 ммоль/л. Соответственно, доля 1–x молекулярно-дисперсного вещества А равна практически 1 при низких концентрациях, но уменьшается при С > ~ 0.09 ммоль/л, так что его абсолютная концентрация остаётся практически постоянной (рис. 5.1 в). Эта критическая концентрация, 0.09 ммоль/л, представляет в данном случае "точку" ККМ.

Положение точки ККМ зависит от степени агрегации n и от константы равновесия К , тогда как сам факт существования ККМ, то есть узкого интервала концентраций, в пределах которого происходит быстрый рост доли x агрегированного вещества, является исключительно следствием большой величины n. При малых n, например n = 2 (рис. 5.1 а и б), критическая концентрация отсутствует. Из сопоставления кривых для n = 2 и 100 на рис. 5.1 ясно так же, что для существования хорошо определённого значения ККМ мицеллы должны быть более или менее монодисперсными, потому что широкое распределение чисел агрегации приведёт к плавному увеличению x в широком интервале концентраций.

Следует заметить, что равновесие мицеллообразования (5.2) принято характеризовать именно величиной ККМ, а не константой равновесия (5.4). Для этого есть две причины. Во-первых, ККМ может быть определена экспериментально без большого труда и со сравнительно высокой точностью, тогда как для константы равновесия К и чисел агрегации n возможны лишь грубые оценки. Во-вторых, использование константы К неудобно из-за математических трудностей при вычислениях равновесных концентраций, связанных с высокими степенями n в уравнениях (5.4, 5.7 и 5.8).

Для разных дифильных ПАВ величины ККМ находятся в диапазоне концентраций приблизительно от 10 до 0.1 ммоль/л (от 10 –2 до 10 –4 моль/л). Точное значение зависит от природы ПАВ и внешних условий. В частности, при данном виде гидрофильной группы, ККМ изменяется таким образом:

Уменьшается с увеличением длины углеводородного радикала;

Уменьшается с уменьшением радиуса противоиона в случае катионактивных ПАВ (например, ККМ бромида цетилтриметиламмония много меньше, чем ККМ фторида цетилтриметиламмония);

Слабо зависит от радиуса противоиона в случае анионактивных ПАВ, но заметно уменьшается с увеличением его заряда (например, додецилсульфат кальция имеет меньшую ККМ, чем та же соль натрия);

Уменьшается с увеличением ионной силы раствора в случае ионогенных ПАВ (например, при добавлении NaCl или аналогичной соли к раствору ПАВ).

ККМ уменьшается с уменьшением температуры, однако для каждого ПАВ мицеллообразование ограничено некоторым интервалом температур, ниже которого (в случае ионогенных ПАВ) или выше которого (в случае неионогенных ПАВ) раствор расслаивается на две макроскопические фазы. Одна из них является молекулярно-дисперсным раствором, не содержащим мицелл, а другая является твёрдой или жидкой фазой ПАВ.

Приборы и методы измерений

Экспериментальные методы определения ККМ основываются на изменении зависимости свойств раствора от концентрации вблизи ККМ. Например, если какое-либо свойство J описывается зависимостью ¦(С ) в области С < ККМ, то в области С > ККМ оно должно описываться другой зависимостью, скажем J = j(С ). Концентрация, при которой происходит наиболее очевидный переход от ¦(С ) к j(С ), рассматривается как ККМ. Некоторые примеры таких зависимостей собраны на рис. 5.2.

Прямым методом определения ККМ является измерение мутности раствора как функции концентрации (турбидиметрические или нефелометрические измерения). В области низких концентраций (С < ККМ) раствор является истинным, поэтому его мутность низкая и едва увеличивается с ростом концентрации. В области С > ККМ раствор является коллоидным, соответственно его мутность быстро растёт с увеличением концентрации в этой области. Если построить график зависимости мутности от концентрации С в интервале С охватывающем ККМ, то вблизи ККМ будет наблюдаться изменение хода этой зависимости.

Осмотическое давление так же может быть использовано для нахождения ККМ. Если выбрать такую полупроницаемую мембрану, через которую проходят молекулы ПАВ, но не проходят мицеллы, то давление по обоим сторонам мембраны будет одинаковым, потому что молекулярно-дисперсный ПАВ будет находится в равновесии (5.2) с мицеллами в обоих камерах осмометра. Если выбрать мембрану правильно – то есть такую, которая не пропускает ни мицеллы, ни молекулярно-дисперсный ПАВ, то осмотическое давление в камере с раствором ПАВ будет расти с ростом концентрации : быстро вплоть до ККМ, но медленно при более высоких концентрациях (см. рис. 5.2). Это объясняется тем, что мицеллы имеют много больший молекулярный вес, чем молекулярно-дисперсный ПАВ, в связи с чем они слабо влияют на осмотическое давление. Применение этого метода ограничено необходимостью работать с очень плотными мембранами, способными задерживать относительно небольшие по размерам молекулы ПАВ.

Более распространённым методом, в случае ионогенных ПАВ, являются кондуктометрические измерения (измерения электрической проводимости). Ионогенный молекулярно-дисперсный ПАВ обычно является сильным электролитом. Поэтому с ростом С в области С < ККМ удельная проводимость растёт, а эквивалентная проводимость уменьшается, последняя в соответствии с законом квадратного корня l = l¥– АÖС . В области С > ККМ, при увеличении концентрации удельная проводимость растёт значительно медленнее, а эквивалентная проводимость уменьшается много быстрее, чем в области С < ККМ. Для этого есть две причины. Во-первых, подвижность мицелл значительно меньше подвижности молекулярно дисперсных ионов. Во-вторых, ПАВ в составе мицелл является слабым электролитом, потому что значительная часть противоионов связана электростатическими силами в слое Штерна мицелл и при наложении внешнего электрического поля эти противоионы не могут перемещаться самостоятельно (см. рис. 7.2 в работе 7). Упрощенно можно сказать, что весь электрический ток переносится молекулярно-дисперсным ПАВ, тогда как мицеллярный ПАВ почти не участвует в переносе электричества. В результате, при С > ККМ проводимость в расчёте на единицу объёма раствора (удельная проводимость) почти не зависит от концентрации ПАВ, так как в этой области концентрация [A ] постоянна (рис. 5.1 в), тогда как проводимость в расчёте на моль растворённого ПАВ (эквивалентная проводимость) уменьшается, потому что доля 1–x молекулярно-дисперсного ПАВ уменьшается.

Другим методом является потенциометрическое измерение активности противоионов с помощью ионоселективных электродов. Например, активность противоионов Na + можно легко измерить с помощью Na + –селективного стеклянного электрода в комплекте с обычным рН-метром. Активность противоионов всегда увеличивается с увеличением концентрации ПАВ, однако в области С > ККМ наклон кривой оказывается меньше, из-за того что часть противоионов остаётся в слое Штерна мицелл. Этот метод получил широкое распространение в последние годы (вместе с распространением ионоселективных электродов) благодаря тому что он менее чувствителен к присутствию посторонних примесей, чем турбидиметрический или кондуктометрический методы.

В настоящей работе ККМ определяется по данным о зависимости поверхностного натяжения раствора от его концентрации. Поверхностное натяжение связано с адсорбцией G по известному уравнению Гиббса. В его простой записи (3.6а) оно справедливо для растворов, содержащих только один растворённый компонент, тогда как растворы дифильных ПАВ в общем случае содержат два растворённых компонента – молекулярно дисперсный ПАВ и мицеллы. По этой причине для поверхностного натяжения s необходимо использовать более общее уравнение 3.5а, которое в обозначениях настоящей работы может быть записано таким образом:

В области концентраций С < ККМ, концентрация мицелл равна нулю и [A ] = С. С учётом этого из (5.9) получается следующая зависимость s от концентрации

, (5.10)

где s 0 – поверхностное натяжение чистого растворителя. Уравнения Гиббса и Лэнгмюра в этой области концентраций имеют вид

где b – отношение константы равновесия (5.1) к концентрации растворителя (воды).

В области концентраций С ³ ККМ, концентрация молекулярно-дисперсного ПАВ приблизительно постоянна и равна ККМ, а концентрация мицелл составляет = С – ККМ. Поэтому член dln [A ] в уравнении (5.9) приблизительно равен нулю. Тогда из уравнения (5.9) следует:

(5.10а)

Таким образом, зависимость s от концентрации описывается разными уравнениями в областях концентраций С < ККМ и С ³ ККМ. Эти уравнения (5.10 и 5.10а) отличаются величинами адсорбции Г А и . Молекулярно-дисперсный дифильный ПАВ имеет асимметричное химическое строение – гидрофильную группу атомов на одном конце молекулы и протяженный углеводородный радикал с другой стороны. Благодаря этому его адсорбция Г А велика и положительна. Поэтому в области С < ККМ следует ожидать сильное уменьшение s с увеличением концентрации. Мицеллы имеют симметричное химическое строение. Углеводородные цепи в них обращены внутрь ядер, а сферическая поверхность является гидрофильной. Из-за этого для них можно ожидать небольшую отрицательную или близкую к нулю адсорбцию . Следовательно, по уравнению (5.10а) можно ожидать приблизительное постоянство или небольшое увеличение s при увеличении концентрации выше точки ККМ.

Фактически, у большинства дифильных ПАВ s сильно уменьшается в области С < ККМ и продолжает уменьшаться в области С > ККМ, но в значительно меньшей степени, чем при С < ККМ (см. рис. 5.2). Вероятно, это объясняется тем, что концентрация молекулярно-дисперсного ПАВ не совсем постоянна в области С > ККМ. Тем не менее, ККМ может быть легко найдена из графика зависимости s от С как концентрация, при которой наблюдается переход от одной зависимости s от С к другой.

Для измерения поверхностного натяжения в настоящей работе применяется сталагмометрический метод. Сталагмометр представляет собой вертикальную капиллярную трубку, служащую для медленного контролируемого истечения жидкости в виде отдельных капель. Согласно уравнению Тейта (1863 г), вес капли (mg ), отрывающейся от кончика трубки, пропорционален длине внешней окружности трубки 2pR и поверхностному натяжению s :

mg = 2pRs (5.11)

где R – внешний радиус трубки. Это уравнение основано на предположении, что после достижения критического веса, достаточного для преодоления сил поверхностного натяжения, вся выступившая капля отрывается целиком, оставляя кончик трубки "сухим". В действительности, как показано на рис. 5.3, при достижении критического веса капля вытягивается с образованием цилиндрической шейки, по которой происходит её разрыв. В результате только часть выступившей капли отрывается, а часть остаётся висеть на кончике трубки. Чтобы учесть остающуюся часть капли, необходимо вводить поправочный коэффициент Y

mg = 2pRs×Y , (5.11а)

который зависит от радиуса R и кубического корня из объёма капли v :

Y = ¦ (5.12)

Эта функция является эмпирической и задаётся в виде таблицы или графика (рис. 5.4).

В сталагмометрическом методе вес капель определяют косвенно, путем подсчёта числа капель n, за которое истекает определённый объём испытуемой жидкости из капилляра. Для этой цели, капиллярная трубка имеет расширение, служащее резервуаром для жидкости (на рис. 5.3 оно не показано). Жидкость поднимают в трубку до верхней метки, расположенной выше расширения, и позволяют стекать пока мениск не опустится до нижней метки, расположенной ниже расширения. При этом подсчитывают число капель n . Если весь объём вытекшей жидкости составляет V , то средний объём v и средний вес mg капли могут быть вычислены по формулам

v = V/n (5.13)

mg = v×r×g (5.14)

где r - плотность жидкости. Комбинируя (5.14) и (5.11а) можно найти рабочее выражение для поверхностного натяжения

Объём V , необходимый для вычислений по уравнению (5.13), находится в отдельных калибровочных измерениях и является постоянным для данного сталагмометра. Однако радиус конца сталагмометра приходится определять периодически ·. Это может быть сделано с помощью экспериментов с жидкостью, поверхностное натяжение и плотность которой известны с хорошей точностью. Радиус R вычисляется по уравнению:

в котором индекс ноль указывает на отношение данного параметра к калибровочной жидкости (в данной работе – к воде). Поскольку коэффициент Y в этом уравнении является функцией искомого радиуса R , вычисления приходится проводить путём последовательных приближений в соответствии с циклическим алгоритмом, описанным в табл. 5.1. Цикл обрывают, когда разница между двумя последовательными приближениями R становится равной или меньше некоторой приемлемой погрешности. Последнее приближение (например R """) принимают в качестве искомого радиуса R и используют далее для вычислений поверхностного натяжения исследуемых растворов ПАВ.

Для применимости уравнения (5.11а) необходимо, чтобы капля жидкости, отрывающаяся от кончика капиллярной трубки, в момент отрыва находилась в равновесии с её паром в окружающей среде. Для этого важны две особенности экспериментальной установки. Во-первых, конец сталагмометра должен находиться в атмосфере насыщенных или близких к насыщению паров испытуемой жидкости. Это достигается тем, что его опускают по возможности низко над поверхностью соответствующей жидкости в приемнике. В наиболее точных измерениях приёмник жидкости изолируют от окружающей атмосферы крышкой с узким отверстием для сталагмометра, как показано на рис. 5.3, и термостатируют при определённой температуре до установления давления насыщенных паров над поверхностью жидкости. Однако этого не достаточно для обеспечения равновесия капля/пар, потому что поверхность жидкости в приёмнике является плоской, тогда как вытекающая из трубки капля имеет искривлённую поверхность. Как известно из уравнения Кельвина, давление паров Р над искривлённой поверхностью жидкости несколько отличается от давления паров над плоской поверхностью Р ¥: Р =

где v m – молярный объём жидкости, r – радиус кривизны поверхности, равный радиусу шара в случае сферической капли. Поэтому давление паров, равновесное по отношению к капле, несколько отличается от того давления, которое является равновесным по отношению к плоской поверхности жидкости в приёмнике. Чтобы равновесие капля/пар устанавливалось более точно, скорость формирования капли на конце трубки должна быть по возможности низкой. Для этого внутренний диаметр капилляра должен быть очень малым. В наиболее точных измерениях скорость формирования каждой капли регулируют дополнительно, надев на верхний конец сталагмометра резиновую или другую эластичную трубку с устройством, регулирующим доступ воздуха (металлический зажим, стеклянный кран и т.д.). С помощью этого устройства позволяют капле сформироваться приблизительно на 80 % по объёму, затем перекрывают доступ воздуха и заставляют её висеть на конце сталагмометра несколько минут, после чего доступ воздуха открывают и дают капле сформироваться окончательно и вытечь.

Последовательность выполнения работы

1. Из исходного водного раствора олеата натрия С 17 Н 33 СООNa с концентрацией 1.00 г/л и дистиллированной воды готовят не менее шести разбавлений до наименьшей концентрации ~ 0.1 ммоль/л. Например, может быть использована следующая схема:

Предварительно необходимо убедиться, что температура растворов одинакова с точностью до 1 °С. Температуру растворов Т , а так же объём сталагмометра V , записывают в лабораторный журнал. (Если преподавателем или лаборантом не указано иначе, объём V следует принять 1.103 см 3)

2. В сосуд (стаканчик или колбу), служащий приёмником жидкости, вытекающей из сталагмометра, наливают около 10 мл очередного раствора и опускают в него сталагмометр так, чтобы его нижний кончик был лишь немного выше уровня жидкости и много ниже краёв сосуда. Оставляют установку в таком виде на 5-10 минут для установления приблизительного равновесия жидкость/пар над поверхностью раствора.

3. Подняв приёмник так, чтобы кончик сталагмометра погрузился в исследуемый раствор, заполняют сталагмометр раствором выше верхней метки с помощью груши или вакуумного насоса. Отсоединяют грушу (или насос) и опускают приёмник. Когда мениск жидкости достигает верхней метки, начинают счёт числа капель и прекращают его, когда мениск жидкости достигает нижней метки. Число капель n записывают.

Скорость истечения жидкости должна составлять не более 1 капли в минуту. Если скорость оказывается больше, её регулируют, периодически закрывая и открывая вручную доступ воздуха в верхний конец капиллярной трубки.

4. Измерения начинают с дистиллированной воды и продолжают в порядке увеличения концентрации ПАВ, повторяя их по пп. 2 и 3 не менее трёх раз для каждого раствора.

Обработка и оформление результатов

1. Результаты измерения числа капель n для каждого раствора заносят в таблицу (см. табл. 5.2) и вычисляют средние числа капель .

2. Вычисляют средний объём v 0 капли воды (с = 0) по уравнению 5.13, используя среднее число капель . Вычисляют далее радиус R сталагмометра по алгоритму, данному в табл. 5.1. Значения s 0 и r 0 , необходимые для вычисления коэффициента В , следует найти интерполяцией данных в табл. П4.2 в приложении 4 для фактической температуры измерений. Промежуточные вычисления последовательных приближений Y и R удобно вести в отдельной таблице (табл. 5.3). Значения Y находят для данного по рис. 5.4. Вычисления продолжают до тех пор, пока последовательные приближения R R i-1не станут различаться на величину расхождения e = , меньшую чем 0.5 %. После достижения этой точности, вычисления останавливают и последнее приближение R принимают за окончательное значение.

3. Вычисляют средний объём капли по уравнению 5.13 для каждого раствора ПАВ и соответствующие отношения . Эти значения следует занести в отдельную таблицу (см. табл. 5.4). Находят по рис. 5.4 коэффициенты Y для вычисленных значений . С помощью полученных значений v и Y вычисляют поверхностное натяжение s по уравнению 5.15. В отношении плотности r растворов ПАВ, входящей в уравнение 5.15, следует учесть, что при концентрациях менее 0.1 г/л она практически равна плотности воды при данной температуре (приложение 4, табл. П4.3)

4. Строят график зависимости s от концентрации. Следует пользоваться молярной концентрацией, поскольку именно в этой шкале принято сравнивать величины ККМ разных ПАВ. Обычно график имеет точку излома или изгиба при ККМ (рис. 5.5), которая бывает видна более отчетливо, когда в качестве переменной по оси абсцисс откладывается логарифм концентрации. Если, тем не менее, излом на полученной кривой не достаточно отчётлив, следует использовать графический способ, показанный на рис. 5.5: находят два приблизительно линейных участка на кривой и строят к ним касательные, абсцисса пересечения которых представляет искомое значение ККМ (логарифма ККМ, если использована логарифмическая шкала).

5. В качестве вывода из работы указать значение ККМ в молярной и весовой (г/л) шкалах концентрации.

Контрольные вопросы

1. Что называется дифильностью молекул? Как классифицируются дифильные ПАВ?

2. Какие особые свойства имеют растворы дифильных ПАВ в сравнении с растворами других веществ?

3. Что называется критической концентрацией мицеллообразования?

4. Что является движущей силой мицеллообразования?

5. Какие существуют теоретические объяснения ККМ?

6. Какую величину ККМ имеют большинство коллоидных ПАВ? Какие факторы на неё влияют?

7. Какие экспериментальные методы применяются для определения ККМ?

8. Как зависит электрическая проводность растворов дифильных ПАВ от концентрации? Отличается ли эта зависимость от того, что известно для обычных электролитов?

9. Как зависит поверхностное натяжение растворов дифильных ПАВ от концентрации? Чем отличается эта зависимость от той, что известна для обычных ПАВ, например для водных растворов бутилового спирта?

10. Что называется сталагмометром? Опишите принцип сталагмометрического определения поверхностного натяжения.

11. От чего зависит вес капли, отрывающейся от кончика сталагмометра?

12. От чего зависит точность определения s сталагмометрическим методом? Что является важным в этом методе для получения правильных результатов?

13. Почему поверхностное натяжение не изменяется при увеличении концентрации ПАВ выше ККМ?

14. Какую роль играет внутренний диаметр капилляра в методе сталагмометрического измерения s ? Влияет ли он на вес капли, отрывающейся от кончика трубки сталагмометра?

15. Какой вид имеет уравнение Лэнгмюра для адсорбции ПАВ в областях концентраций меньше ККМ и больше ККМ?

Литература

Зимон А.Д., Балакирев А.А., Дехтяренко Н.Г., Бабак В.Г., Аксёнов В.Н. Коллоидная химия. Лабораторный практикум. Часть 1. М: ВЗИПП 1986, Лаб. работа 5.

Berthod A. Structures physico-chimiques des milieux disperses, micelles, emulsions et microemulsions. Journal de chimie physique 1983, vol. 80, p. 407-424 (о ККМ).

Адамсон А. Физическая химия поверхностей. (пер. с англ.) М: Мир 1979, Глава 1 (об определении s), Глава 11 (о ККМ).

Dickinson E., Stainsby G. Colloids in food. L: Applied Science 1982, Chapter 4 (о ККМ).

Мелвин-Хьюз Э.А. Физическая химия. Том 2. (пер. с англ.) М: Издатинлит 1962, Глава 19 (об определении s).

Micelles, membranes, microemulsions, and monolayers. (Ed. W.M. Gelbart, A. Ben-Shaul, D. Roux) N.Y.: Springer-Verlag, 1994, Chapter 1 (рисунок 5.2)

Harkins W.D., Brown F.E. The determination of surface tension (free surface energy), and the weight of falling drop. Journal of the American Chemical Society 1919, vol. 41, 499-524 (эксперимнтальные точки для рис. 5.4)

Бовкун О.П., Маркина З.Н., Гракова Т.С. Определение критической концентрации мицеллообразования водных растворов мыл с добавками диоксана, метилового спирта и этиленгликоля. Коллоидный журнал 1970, том 32, 327-332 (эксперимнтальные точки для рис. 5.5)

Рис. 5.1 (а, б) Распределение растворенного вещества между ассоциированными молекулами (x, в долях единицы) и неассоциированными молекулами (1–x) при некоторых произвольных значениях констант равновесий. (мМ – ммоль/л) (в) – зависимость абсолютных концентраций ассоциированных и неассоциированных молекул ПАВ от общей концентрации С при n = 100.

Рис. 5.2 Зависимость некоторых свойств J от концентрации типичного ПАВ (додецилсульфата натрия) вблизи ККМ

Рис. 5.3 Схематическое изображение капли, вытекающей из кончика капиллярной трубки. Кончик находится в стеклянном приёмнике над поверхностью жидкости, которую наливают за некоторое время до начала капания из трубки.

Рис. 5.4 Поправочный коэффициент Y как функция отношения . При > 0.3 следует пользоваться рис (а), при < 0.3 – рис. (б)

Рис. 5.5 (образец) Изменение поверхностного натяжения в интервале концентраций, охватывающем ККМ. Показаны элементы графических построений, которые могут быть полезны для более надёжного определения этой точки.

· внешняя окружность конца сталагмометра должна быть очень гладкой. Поэтому её подвергают периодической шлифовке.

  • Вопрос. Стандартизация растворов. Первичные и вторичные стандарты
  • Воспаление. Определение понятия. Причины. Основные признаки воспаления. Механизм их развития. Значение воспаления для организма

  • Водные растворы многих поверхностно-активных веществ обладают особыми свойствами, отличающими их как от истинных растворов низкомолекулярных веществ, так и от коллоидных систем. Одной из отличительных особенностей растворов ПАВ является возможность существования их как в виде молекулярно-истинных растворов, так и в виде мицеллярных - коллоидных.

    ККМ - это концентрация , при достижении которой при добавлении ПАВ в раствор концентрация на границе раздела фаз остается постоянной, но в то же время происходит самоорганизация молекул ПАВ в объёмном растворе (мицеллообразование или агрегация). В результате такой агрегации образуются так называемые Отличительным признаком мицеллообразования служит помутнение раствора ПАВ. Водные растворы ПАВ, при мицеллообразовании также приобретают голубоватый оттенок (студенистый оттенок) за счёт преломления света мицеллами.

    Переход из молекулярного состояния в мицеллярное происходит, как правило, в достаточно узкой области концентраций, ограниченной, так называемыми, граничными концентрациями. Впервые наличие таких граничных концентраций обнаружил шведский ученый Экваль. Он установил, что при граничных концентрациях многие свойства растворов резко меняются. Эти граничные концентрации лежат ниже и выше средней ККМ; только при концентрациях, меньших минимальной граничной концентрации, растворы ПАВ аналогичны истинным растворам низкомолекулярных веществ.

    Методы определения ККМ:

    Определение ККМ может осуществляться при изучении практически любого свойства растворов в зависимости от изменения их концентрации. Наиболее часто в исследовательской практике используются зависимости мутности растворов, поверхностного натяжения, электрической проводимости, коэффициента преломления света и вязкости от общей концентрации растворов. Примеры получающихся зависимостей приведены на рисунках:

    рис.1 - поверхностное натяжение (s) растворов додецилсульфата натрия при 25 о С

    рис.2 - эквивалентная электрическая проводимость (l) растворов децилтриметиламмоний бромида при 40 о С

    рис.3 - удельная электрическая проводимость (k) растворов децилсульфата натрия при 40 о С

    рис.4 - вязкость (h/с) растворов додецилсульфата натрия при 30 о С

    Исследование любого свойства растворов ПАВ от его концентрации позволяет определить среднюю концентрацию , при которой система совершает переход в коллоидное состояние. К настоящему моменту описано более сотни разнообразных методов определения критической концентрации мицеллообразования; некоторые из них, кроме ККМ, позволяют также получать богатую информацию о структуре растворов, величине и форме мицелл, их гидратации и т.д. Мы остановимся только на тех методах определения ККМ, которые используются наиболее часто.

    Для определения ККМ по изменению поверхностного натяжения растворов ПАВ часто используются методы максимального давления в газовом пузырьке , сталагмометра, отрыва кольца или уравновешивания пластины, измерения объема или формы висящей или лежащей капли, взвешивания капель и др .Определение ККМ этими методами основано на прекращении изменения поверхностного натяжения раствора при предельном насыщении адсорбционного слоя на поверхности раздела «вода - воздух», «углеводород - вода», «раствор - твердая фаза». Наряду с определением ККМ эти методы позволяют найти величину предельной адсорбции, минимальную площадь, приходящуюся на молекулу в адсорбционном слое. На основании экспериментальных значений поверхностной активности на границе «раствор-воздух» и предельных площадей, приходящихся на молекулу в насыщенном адсорбционном слое, может быть определена также длина полиоксиэтиленовой цепи неионогенных ПАВ и величина углеводородного радикала. Определение ККМ при различных температурах часто используют для расчета термодинамических функций мицеллообразования.

    Исследования показывают, что наиболее точные результаты получаются при измерении поверхностного натяжения растворов ПАВ методом уравновешивания пластины . Достаточно хорошо воспроизводятся результаты, найденные сталогмометрическим методом . Менее точные, но достаточно корректные данные получаются при использовании метода отрыва кольца . Плохо воспроизводятся результаты чисто динамических методов.

    • При определении ККМ вискозиметричесим методом экспериментальные данные выражают обычно в виде зависимости приведенной вязкости от концентрации растворов ПАВ. Вискозиметрический метод также позволяет определить наличие граничных концентраций мицеллообразования и гидратацию мицелл по характеристической вязкости. Этот метод особенно удобен для неионогенных ПАВ в связи с тем, что у них отсутствует электровязкостный эффект.
    • Определение ККМ по светорассеянию основано на том, что при образовании мицелл в растворах ПАВ резко возрастает рассеяние света частицами и увеличивается мутность системы. По резкому изменению мутности раствора и определяют ККМ. При измерении оптической плотности или светорассеяния растворов ПАВ часто наблюдают аномальное изменение мутности, особенно в том случае, если ПАВ содержит некоторое количество примесей. Данные светорассеяния используют для определения мицеллярной массы, чисел агрегации мицелл и их формы.
    • Определение ККМ по диффузии проводят измеряя коэффициенты диффузии, которые связаны как с размером мицелл в растворах, так и с их формой и гидратацией. Обычно значение ККМ определяют по пересечению двух линейных участков зависимости коэффициента диффузии от разведения растворов. Определение коэффициента диффузии позволяет рассчитать гидратацию мицелл или их размер. Совмещая данные измерения коэффициента диффузии и коэффициента седиментации в ультрацентрифуге, можно определить мицеллярную массу. Если измерить гидратацию мицелл независимым методом, то по коэффициенту диффузии можно определить форму мицелл. Наблюдение за диффузией проводится обычно при введении в растворы ПАВ дополнительного компонента – метки мицелл, поэтому метод может дать искаженные результаты при определении ККМ, если произойдет смещение мицеллярного равновесия. В последнее время коэффициент диффузии измеряют при использовании радиоактивных меток на молекулах ПАВ. Такой способ не смещает мицеллярного равновесия и дает наиболее точные результаты.
    • Определение ККМ рефрактометрическим методом основано на изменении коэффициента преломления растворов ПАВ при мицеллообразовании. Этот метод удобен тем, что не требует введения дополнительных компонентов или применения сильного внешнего поля, которые могут сместить равновесие «мицеллы-молекулы», и оценивает свойства системы практически в статических условиях. Он требует, однако, тщательного термостатирования и точного определения концентрации растворов, а также необходимости учета времени эксперимента в связи с изменением коэффициента преломления стекла за счет адсорбции ПАВ. Метод дает хорошие результаты для неионогенных ПАВ с невысокой степенью оксиэтилирования.
    • В основе определения ККМ ультраакустическим методом лежит изменение характера прохождения ультразвука через раствор при образовании мицелл. При изучении ионогенных ПАВ этот метод удобен даже для весьма разбавленных растворов. Растворы неионогенных веществ труднее поддаются характеристике этим методом, особенно если растворенное вещество имеет малую степень оксиэтилирования. С помощью ультраакустического метода можно определить гидратацию молекул ПАВ как в мицеллах, так и в разбавленных растворах.
    • Широко распространенный кондуктометрический метод ограничен только растворами ионогенных веществ. Кроме ККМ он позволяет определить степень диссоциации молекул ПАВ в мицеллах, что необходимо знать для корректировки мицеллярных масс, найденных по светорассеянию, а также для введения поправки на электровязкостный эффект при расчете гидратации и чисел ассоциации методами, связанными с явлениями переноса.
    • Иногда используются такие методы, как ядерный магнитный резонанс или электронный парамагнитный резонанс , которые дают возможность кроме ККМ измерять «время жизни» молекул в мицеллах, а также как ультрафиолетовая и инфракрасная спектроскопия, которые позволяют выявить расположение молекул солюбилизата в мицеллах.
    • Полярографические исследования, так же как и измерения рН растворов, часто связаны с необходимостью введения третьего компонента в систему, что, естественно, искажает результаты определения ККМ. Методы солюбилизации красителя, солюбилизационного титрования и хроматографии на бумаге , к сожалению оказываются недостаточно точными для измерения ККМ, но зато позволяют судить о структурных изменениях мицелл в относительно концентрированных растворах.

    Все дисперсные системы в зависимости от механизма процесса их образования по классификации П. А. Ребиндера подразделяют на лиофильные, которые получаются при самопроизвольном диспергировании одной из фаз (самопроизвольное образование гетерогенной свободнодисперсной системы), и лиофобные, получающиеся в результате диспергирования и конденсации с пересыщением (принудительное образование гетерогенной свободноднсперсной системы).

    Наличие гидрофильной и олеофильной частей у молекул ПАВ является характерной отличительной особенностью их строения. По способности к диссоциации в водных растворах поверхностно-активные вещества делят на ионогенные и неионогенные. В свою очередь ионогенные ПАВ подразделяют на анионные, катионные и амфолитпые (амфотерные).

    1) Анионные ПАВ диссоциируют в воде с образованием поверхностно-активного аниона.

    2) Катионные ПАВ диссоциируют в воде с образованием поверхностно-активного катиона.

    3) Амфолитные ПАВ содержат две функциональные группы, одна из которых имеет кислый, а другая основный характер, например карбоксильную и аминную группы. В зависимости от рН среды амфолитные ПАВ проявляют анионоактивные или катионоактивные свойства.

    Все ПАВ относительно поведения их в воде делят на истинно растворимые и коллоидные.

    Истинно растворимые ПАВ в растворе находятся в молекулярно-дисперсном состоянии вплоть до концентраций, соответствующих их насыщенным растворам и разделению системы на две сплошные фазы.

    Главной отличительной особенностью коллоидных ПАВ является способность образовывать термодинамически устойчивые (лиофильные) гетерогенные дисперсные системы (ассоциативные, или мицеллярные, коллоиды). К основным свойствам коллоидных ПАВ, обусловливающим их ценные качества и широкое применение, относятся высокая поверхностная активность; способность к самопроизвольному мицеллообразованию - образованию лиофильных коллоидных растворов при концентрации ПАВ выше некоторого определенного значения, называемого критической концентрацией мицеллообразования (KKM); способность к солюбилизации - резкому увеличению растворимости веществ в растворах коллоидных ПАВ вследствне их «внедрения» внутрь мицеллы; высокая способность стабилизировать различные дисперсные системы.

    При концентрациях выше KKM молекулы ПАВ собираются в мицеллы (ассоциируют) и раствор перехолит в мицеллярную (ассоциативную) коллоидную систему.

    Под мицеллой ПАВ понимают ассоциат дифильных молекул, лиофильные группы которых обращены к соответствующему растворителю, а лиофобные группы соединяются друг с другом, образуя ядро мицеллы. Число молекул, составляющих мицеллу, называют числом ассоциации, а общую сумму молекулярных масс молекул в мицелле, или произведение массы мицеллы на число Авогадро, - мицеллярной массой. Определенное ориентирование дифильных молекул ПАВ в мицелле обеспечивает минимальное межфазное натяжение на границе мицелла - среда.

    При концентрациях ПАВ в водном растворе, несколько превышающихKKM, согласно представлениям Гартли образуются сферические мицеллы (мицеллы Гартли). Внутренняя часть мицелл Гартли состоит из переплетающихся углеводородных радикалов, полярные группы молекул ПАВ обращены в водную фазу. Диаметр таких мицелл равен удвоенной длине молекул ПАВ. Число молекул в мицелле быстро растет в пределах узкого интервала концентраций, а при дальнейшем увеличении концентрации практически не изменяется, а увеличивается число мицелл. Сферические мицеллы могут содержать от 20 до 100 молекул и более.

    При увеличении концентрации ПАВ мицеллярная система проходит ряд равновесных состояний, различающихся по числам ассоциации, размерам и форме мицелл. При достижении определенной концентрации сферические мицеллы начинают взаимодействовать между собой, что способствует их деформации. Мицеллы стремятся принять цилиндрическую, дискообразную, палочкообразную, пластинчатую форму.

    Мицеллообразование в неводных средах, как правило, является результатом действия сил притяжения между полярными группами ПАВ и взаимодействия углеводородных радикалов с молекулами растворителя. Образующиеся мицеллы обращенного вида содержат внутри негидратированные или гидратированные полярные группы, окруженные слоем из углеводородных радикалов. Число ассоциации (от 3 до 40) значительно меньше, чем для водных растворов ПАВ. Как правило, оно растет с увеличением углеводородного радикала до определенного предела.

    Критическая концентрация мицеллообразования - важнейшая характеристика растворов ПАВ. Она зависит прежде всего от строения углеводородного радикала в молекуле ПАВ и характера полярной группы, наличия в растворе электролитов и неэлектролитов, температуры и других факторов.

    Факторы, влияющие на ККМ:

    1) При увеличении длины углеводородного радикала повышается растворимость ПАВ и возрастает KKM. Разветвленность, непредельность и циклизация углеводородного радикала уменьшают склонность к мицеллообразованию и увеличивают KKM. Характер полярной группы играет существенную роль при мицеллообразовании в водных и неводных средах.

    2) Введение электролитов в водные растворы неионогенных ПАВ слабо влияет на KKM и размер мицеллы. Для ионогенных ПАВ это влияние существенно.

    3) Введение неэлектролитов (органических растворителей) в водные растворы ПАВ также приводит к изменению KKM.

    4) Температура

    Методы определения KKM основаны на регистрации резкого изменения физико-химических свойств растворов ПАВ в зависимости от концентрации (например, поверхностного натяжения σ, мутности τ, эквивалентной электропроводности λ, осмотического давления π, показателя преломления n). На кривой зависимости свойство - состав в области KKM обычно появляется излом.

    1) Кондуктометрический метод применяется для определенияKKM ионогенных ПАВ.

    2) Другой метод" определения KKM основан на измерении поверхностного натяжения водных растворов ПАВ, которое резко уменьшается с ростом концентрации вплоть до KKM, а затем остается постоянным.

    3) Солюбилизация красителей и углеводородов в мицеллах позволяет определять KKM ионогенных и неионогенных ПАВ как в водных, так и неводных растворах. При достижении в растворе ПАВ концентрации, соответствующей KKM, растворимость углеводородов и красителей резко увеличивается.

    4) Измерение интенсивности светорассеяния при мицеллообразовании позволяет не только находить KKM по резкому увеличению наклона концентрационной кривой, но и опоеделять мицеллярную массу и числа ассоциации.