Вид будущих российских атомных ледоколов. Атомный ледокольный флот

Россия обладает единственным в мире атомным ледокольным флотом, призванным на основе применения передовых ядерных достижений решать задачи обеспечения национального присутствия в Арктике. С его появлением началось настоящее освоение Крайнего Севера . Это обусловлена тем, что все северные границы государства — морские и проходят они по водам Северного Ледовитого океана, моря которого почти весь год покрыты льдами , за исключением части Баренцева моря.

Для России во все времена Северный морской путь, проходящий вдоль северного побережья страны, являлся стратегической магистралью , по которой можно перевозить грузы, перегонять суда и военные корабли с запада на восток страны и обратно. Это самый короткий путь из Европы в Японию и Китай.

До 1960-х годов навигация в Северном Ледовитом океане была три — три с половиной месяца. Небольшая мощность энергетических установок не позволяла судам форсировать тяжелые льды ранней весной и поздней осенью. Поэтому было решено начать строительство ледоколов с атомными реакторами, которые смогли бы осуществлять круглогодичную ледовую проводку в Арктике .

С 1971 по 1992 годы на Балтийском заводе в Ленинграде были построены атомные ледоколы второго поколения "Арктика", "Сибирь", "Россия", "Советский Союз" и "Ямал". С 1982 по 1988 год на Керченском судостроительном заводе "Залив" был создан лихтеровоз-контейнеровоз "Севморпуть". Атомные ледоколы "Таймыр" и "Вайгач" строились по заказу СССР на судостроительной верфи компании "Вяртсиля" (Wartsila) в Финляндии с 1985 по 1989 год. При этом использовались советские оборудование (силовая установка) и сталь. "Таймыр" был принят в эксплуатацию 30 июня 1989 года, а "Вайгач" — 25 июля 1990 года. Благодаря уменьшенной осадке они могли обслуживать суда, следующие по Северному морскому пути с заходом в устья сибирских рек .

В настоящее время в состав атомного ледокольного флота входят: два атомных ледокола с двухреакторной ядерной энергетической установкой мощностью 75 тысяч лошадиных сил ("Ямал", "50 лет Победы"), два ледокола с однореакторной установкой мощностью около 50 тысяч лошадиных сил ("Таймыр", "Вайгач"), атомный лихтеровоз-контейнеровоз "Севморпуть" и пять судов технологического обслуживания.

Остальные атомоходы выработали свой технический ресурс и выведены из эксплуатации ("Ленин" в 1989 году, "Сибирь" в 1992 году , "Арктика" в 2008 году , "Россия" ). В 2017 году было принято решение утилизировать атомоход "Советский Союз", хотя ранее .

У действующих российских атомных ледоколов были выполнены работы по продлению срока эксплуатации реакторных установок. Эксплуатацию атомохода "Вайгач" намечено завершить на рубеже 2023-2024 годов, "Таймыра" — в 2025-2026 годов, "Ямала" — 2027-2028 годов. Завершение эксплуатации атомного ледокола "50 лет Победы" отнесено за 2035 год.

Вместо выбывающих атомных ледоколов в строй войдут строящиеся сейчас более совершенные, проекта 22220 "Арктика", "Сибирь" и "Урал".

Ледоколы проекта 22220 имеют, кроме ядерной установки, электродвигательные системы, что значительно удешевляет его эксплуатацию и облегчает работу экипажа. Реакторы работают не только на паровые турбины, которые в свою очередь вращают гребные валы, они выступают в роли электростанций, подающие ток всем потребителям судна, в том числе и двигателям. И этим они . Ледоколы проекта 22220 смогут проводить караваны судов в арктических условиях, пробивая по ходу движения лед толщиной до трех метров. Новые корабли , перевозящих углеводородное сырье с месторождений Ямальского и Гыданского полуостровов, шельфа Карского моря на рынки стран Азиатско-Тихоокеанского региона. Двухосадочная конструкция судна с регулируемой глубиной погружения позволяет использовать его как в арктических водах, так и в устьях полярных рек.

"Арктика" и "Сибирь" уже спущены на воду, а "Урал" . "Арктику" планируется сдать в первой половине 2019 года, "Сибирь" и "Урал" — .

Кроме того, готовится проект нового, еще более мощного российского атомного ледокола 10510 "Лидер" мощностью 120 мегаватт. Основными задачами новых атомоходов-лидеров должны стать обеспечение круглогодичной навигации по Северному морскому пути и .

Без современных ледоколов невозможно решение многих социально-экономических задач, которые стоят перед Россией в Арктике. Это включает в себя развитие Крайнего Севера, реализацию нефтегазового потенциала арктического шельфа России, проведение геолого-разведочных работ по исследованию арктических шельфовых районов, обустройство месторождений и всей обслуживающей инфраструктуры, а также эффективную эксплуатацию и вывоз добытой продукции.

Материал подготовлен на основе информации РИА Новости и открытых источников

Россия обладает единственным в мире атомным ледокольным флотом, призванным на основе применения передовых ядерных достижений решать задачи обеспечения национального присутствия в Арктике. С его появлением началось настоящее освоение Крайнего Севера.

Основными направлениями деятельности Росатомфлота (предприятие Госкорпорации «Росатом») являются: ледокольное обеспечение проводки судов в акватории Северного морского пути (СМП) в замерзающие порты РФ; обеспечение проведения высокоширотных научно-исследовательских экспедиций; обеспечение аварийно-спасательных операций во льдах на акватории СМП и неарктических замерзающих морей. Кроме того, компания выполняет техническое обслуживание и проведение ремонтных работ общесудового и специального назначения как для собственных нужд, так и для сторонних судовладельцев; участвует в выполнении работ по экологической реабилитации Северо-Западного региона России; а также осуществляет туристические круизы на Северный полюс, острова и архипелаги Центральной Арктики. В силу особенностей двигательных установок одна из технических задач - обеспечение безопасного обращения с ядерными материалами и радиоактивными отходами.

Северный морской путь (СМП) - судоходный маршрут, главная морская коммуникация в российской Арктике. Проходит вдоль северных берегов России по морям Северного Ледовитого океана (Баренцово, Карское, Лаптевых, Восточно-Сибирское, Чукотское и Берингово). СМП соединяет европейские и дальневосточные порты России, а также устья судоходных сибирских рек в единую транспортную систему. Длина этой транспортной артериии составляет 5600 км от пролива Карские Ворота до Бухты Провидения.

В 2008 году Федеральное государственное унитарное предприятие «Атомфлот» вошло в состав Государственной корпорации по атомной энергии «Росатом» на основании Указа Президента Российской Федерации «О мерах по созданию Государственной корпорации по атомной энергии «Росатом» (№ 369 от 20 марта 2008 года). С 28 августа 2008 года ему переданы суда с ядерной энергетической установкой и суда атомного технологического обслуживания.

В состав атомного ледокольного флота в настоящее время входят: два атомных ледокола с двухреакторной ядерной энергетической установкой мощностью 75 тыс. л.с. («Ямал», «50 лет Победы») и два ледокола с однореакторной установкой мощностью около 50 тыс. л.с. («Таймыр», «Вайгач»). Их дополняет атомный контейнеровоз «Севморпуть» (мощность реакторной установки - 40 тыс. л.с.). Кроме того, Росатомфлот оперирует тремя судами технологического обслуживания и судном-контейнеровозом «Россита». В его ведении находятся также суда портового флота, предназначенные для обслуживания акватории порта Сабетта: буксиры ледового класса «Пур» и «Тамбей»; ледокольные буксиры «Юрибей» и «Надым»; а также портовый ледокол «Обь».

История отечественного атомного ледокольного флота берет свой отсчет 3 декабря 1959 года. В этот день был принят в эксплуатацию первый в мире атомный ледокол «Ленин». Только с появлением атомного ледокольного флота в 70-е годы XX века Северный морской путь начал обретать очертания национальной транспортной артерии в Арктике. Ввод в эксплуатацию атомного ледокола «Арктика» (1975 г.) открыл круглогодичную навигацию в западном секторе Арктики. На этом этапе развития Севморпути ключевую роль сыграло становление Норильского промышленного района и появление на трассе круглогодичного порта Дудинка. Затем были построены ледоколы «Сибирь», «Россия», «Советский Союз», «Таймыр», «Вайгач», «Ямал», «50 лет Победы». Их сооружение и эксплуатация на десятилетия предопределили технологические преимущества нашей страны в атомном судостроении.

Сегодня основная работа Росатомфлота связана с обеспечением безопасности мореплавания и стабильной навигации, в том числе и транзитной, по Северному морскому пути. Транспортировка углеводородной и прочей продукции на рынки Азии и Европы по трассе СМП может служить реальной альтернативой существующим транспортным связям между странами Атлантического и Тихоокеанского бассейнов через Суэцкий и Панамский каналы. Она обеспечивает выигрыш во времени: например, расстояние от порта Мурманск до портов Японии через Северный морской путь составляет около 6 тыс. миль, а через Суэцкий канал – более 12 тыс. миль, соответственно, длительность транзита составляет, в зависимости от метеоусловий и ледовой обстановки, ориентировочно 18 и 37 дней.

Во многом благодаря атомному ледокольному флоту на трассе СМП фиксируется ощутимый грузопоток. В 2015 году по СМП было перевезено около 4 млн тонн грузов. Таким образом, объем перевозок увеличился в 2,7 раз по сравнению с 1998 годом, когда перевозки достигли своего минимума (1,46 млн тонн). Постепенно проводки становятся значимее, возникает больше работы с конкретными, ключевыми заказчиками и проектами, которые предстоит обслуживать вплоть до 2040 года. В 2016 году объем перевозок грузов по трассам Северного морского пути составил более 7,3 млн тонн, что на 35% больше, чем в 2015 году. В 2017 году под проводкой атомных ледоколов в акватории Северного морского пути проведено 492 судна общей валовой вместимостью 7 175 704 тонны (для сравнения, в 2016 - 410 судов общей валовой вместимостью 5 288 284 тонны).

Росатомфлот обеспечивает работы по изучению гидрометеорологического режима морей и минерально-сырьевых ресурсов арктического шельфа, прилегающего к северному побережью РФ. Основные заказчики: ОАО «Государственный научно-исследовательский навигационно-гидрографический институт»; ФГБУ «Арктический и антарктический научно- исследовательский институт», ОАО «Севморнефтегеофизика», ОАО «Арктикморнефтегазразведка», ОАО «Морская арктическая геологоразведочная экспедиция». Атомоходы «Росатомфлота» участвуют в обеспечении экспедиций на дрейфующей полярной станции «Северный полюс».

Тип ледокола - атомный с турбоэлектрической установкой, четырьмя палубами, двумя платформами, пятиярусной средней надстройкой и двумя мачтами.

ОСНОВНЫЕ ХАРАКТЕРИСТИКИ ЛЕДОКОЛА

  • Длина наибольшая-150 м
  • Ширина наибольшая-30 м
  • Высота корпуса, м-17, 2
  • Осадка, м-11,0
  • Водоизмещение полное-23000 т
  • Толщина корпуса-от 32мм до 48мм по ледовому поясу
  • Скорость во льду, -2,25м-при скорости 2 узла
  • Скорость в чистой воде, узлов-20,8
  • Скорость во льду-от 2 до 20,8 узлов
  • Мощность главной установки-75000 л.с.

Ледокол обладает хорошей управляемостью и маневренностью, имеет плавную качку.

Непотопляемость ледокола удовлетворяет требованиям Правил Регистра при затоплении двух любых отсеков. Корпус ледокола разделен 8 переборками на 9 водонепроницаемых отсеков. По всей длине помещений энергетической установки (ЭУ) установлены продольные водонепроницаемые переборки, образующие второй борт. Отдельные наиболее важные помещения ледокола выделены в самостоятельные водонепроницаемые контуры.

Корпус ледокола выполнен из специальных легированных сталей, для защиты корпуса от коррозии наружная поверхность подводной части покрыта специальной краской "Инерта-160".

Противопожарная защита ледокола выполнена в соответствии с Правилами Регистра и обеспечивается конструктивными мероприятиями по разделению ледокола на четыре вертикальные зоны, а также применением негорючих и трудносгораемых материалов, установкой автоматической пожарной сигнализации, оборудованием комплекса противопожарных систем - водяной, химической, пенотушения и необходимого противопожарного имущества.

Помещения ледокола, относящиеся к категории взрывоопасных (хранилища авиатоплива, ангар, пост выдачи топлива, аккумуляторные, помещения зарядных преобразователей, электрогазосварочных работ) оборудованы взрывобезопасной электроарматурой, системой пожарной сигнализации, средствами пожаротушения и вентиляцией.

Для удовлетворения требований по защите окружающей среды на ледоколе установлены

  • установка для сжигания судовых отходов СП-50 производительностью 50 кг/ч по мусору и 50 кг/ч по нефтеотходам;
  • пять автоматизированных установок для очистки и обеззараживания сточных вод типа ЭОС-5 производительностью по 5 куб.м/сутки и шесть автоматизированных установок типа ЭОС-15 производительностью 15 куб.м/сутки в системе сточных вод;
  • два автоматизированных сепаратора отстойного типа и два сепаратора трюмных вод с предвключенными механическими фильтрами в осушительной системе.

В качестве спасательных средств на ледоколе используются две закрытые спасательные пластмассовые моторные шлюпки и надувные спасательные плоты ПСН-10МК, имеется также рабочий буксирный катер "Орлан". Имеется комплекс систем и устройств, включая ангар, обеспечивающий эксплуатацию вертолета.

Для размещения штатного экипажа ледокола предусмотрены 155 кают, в том числе: 11 блок-кают для старшего комсостава, 123 одноместных кают, 17 двухместных кают и 4 шестиместных кают, всего на 189 человек. Кроме того, для питания, отдыха и проведения досуга экипажа предусмотрены столовая на 84 чел., кают-компания на 88-90 чел., клуб на 108 чел. и три салона для отдыха.

Обитаемость экипажа обеспечивается системами кондиционирования воздуха, пресной и забортной воды, вентиляции, сточно-фановой, рефрижерации.

На ледоколе установлены новейшие средства радиосвязи и электрорадионавигации: спутниковые радиотелеграфная и радиотелеграфнотелефонная установки средних, коротких, промежуточных и ультракоротких волн, станция коллективного приема телевидения "Экран-М1", комплекс телевещательной аппаратуры "Глобус-4", РЛС, средство автоматической радиолокационной прокладки, гирокомпас, радиопеленгатор, эхолот, электрический лаг, переносные шлюпочные радиостанции и др. приборы связи.

Ядерная энергетическая установка

Ядерная энергетическая установка (ЯЭУ) атомного судна состоит из одной или двух автономных атомных паро-производящих установок (АППУ), паротурбинной (ПТУ) и гребной электрической установок (ГЭУ), двух судовых электростанций, вспомогательных механизмов, обслуживающих систем, судовых устройств и оборудования.

Типы АППУ

С 1959 года на атомных судах эксплуатировались 5 типов атомных паропроизводящих установок: ОК-150, ОК-900, ОК-900А,КЛТ-40 и КЛТ-40М.

Типы АППУ, эксплуатируемые на атомных судах

Тип АППУ,
название судна

ОК-150
«Ленин»
(до 1966г.)

ОК-900
«Ленин»

ОК-900А
«Арктика», «Сибирь»,
«Россия» ,«Сов.Союз»,
«Ямал», «50-лет Победы»

КЛТ-40
«Севморпуть»

КЛТ-40М
«Таймыр» «Вайгач»

Номинальная мощность
реактора, ВМт

Номинальная
паро-производительность, т/ч

Мощность на винтах, л/с


Устройство

Компоновка всех установок - блочная. Каждый блок включает в себя реактор водо-водяного типа (т.е. вода является и теплоносителем, и замедлителем нейтронов), четыре циркуляционных насоса и четыре парогенератора, компенсаторы объема, ионообменный фильтр с холодильником и другое оборудование. Реактор, насосы и парогенераторы имеют отдельные корпуса и соединены друг с другом короткими патрубками типа «труба в трубе». Все оборудование расположено вертикально в кессонах бака железоводной защиты и закрыто малогабаритными блоками защиты, что обеспечивает легкую доступность при ремонтных работах.

Реактор

Ядерный реактор - это техническая установка, в которой осуществляется управляемая цепная реакция деления ядер тяжелых элементов с освобождением ядерной энергии. Реактор состоит из активной зоны и отражателя. Активная зона содержит ядерное топливо в защитном покрытии (тепловыделяющие элементы - ТВЭЛы) и замедлитель. ТВЭЛы, имеющие вид тонких стержней, собраны в пучки и заключены в чехлы. Такие конструкции называются тепловыделяющими сборками (ТВС). Активная зона реактора состоит из 241 ТВС.

Корпус реактора с эллиптическим днищем изготовлен из низколегированной теплостойкой стали с антикоррозийной наплавкой на внутренних поверхностях.

Принцип действия АППУ

Тепловая схема ППУ атомного судна состоит из 4-х контуров.

Через активную зону реактора прокачивается теплоноситель I контура (вода высокой степени очистки). Вода нагревается до 317 градусов, но не превращается в пар, поскольку находится под давлением. Из реактора теплоноситель 1 контура поступает в парогенератор, омывая трубы, внутри которых протекает вода II контура, превращающаяся в перегретый пар. Далее теплоноситель I контура циркуляционным насосом снова подается в реактор.

Из парогенератора перегретый пар (теплоноситель II контура) поступает на главные турбины. Параметры пара перед турбиной: давление - 30 кгс/см2 (2,9 МПа), температура - 300 °С. Затем пар конденсируется, вода проходит систему ионообменной очистки и снова поступает в парогенератор.

III контур предназначен для охлаждения оборудования АППУ, в качестве теплоносителя используется вода высокой чистоты (дистиллят). Теплоноситель III контура имеет незначительную радиоактивность.

IV контур служит для охлаждения воды в системе III контура, в качестве теплоносителя используется морская вода. Также IV контур используется для охлаждения пара II контура при разводке и расхолаживании установки.

Безопасность

АППУ выполнена и размещена на судне таким образом, чтобы обеспечить защиту экипажа и населения от облучения, а окружающую среду - от загрязнения радиоактивными веществами в пределах допустимых безопасных норм как при нормальной эксплуатации, так и при авариях установки и судна за счет. С этой целью на возможных путях выхода радиоактивных веществ созданы четыре защитных барьера между ядерным топливом и окружающей средой:

первый - оболочки топливных элементов активной зоны реактора;

второй - прочные стенки оборудования и трубопроводов первого контура;

третий - защитная оболочка реакторной установки;

четвертый - защитное ограждение, границами которого являются продольные и поперечные переборки, второе дно и настил верхней палубы в районе реакторного отсека.

Безопасность АППУ обеспечена устройствами и системами нормальной эксплуатации и системами безопасности, предназначенными для надежного выключения реактора, отвода тепла от активной зоны и ограничения последствий возможных аварий.

20 ноября 1953 года Совет Министров СССР принял Постановление № 2840-1203 о разработке мощного арктического ледокола с ядерной энергетической установкой. Ледокол предназначался для проводки в ледовых условиях Арктики по высокоширотным трассам и по Северному морскому пути транспортных судов, а также для экспедиционного плавания в Арктике. Постановлению предшествовало обращение в правительство академиков А.П. Александрова и И.В. Курчатова совместно с руководителями ряда отраслей промышленности и Морского флота, в котором указывалось, что появление мощного атомного ледокола в Арктике позволит более эффективно использовать Северный морской путь как важнейшую транспортную магистраль страны, и одновременно станет убедительной демонстрацией серьезности намерений и планов СССР по использованию атомной энергии в мирных целях.

Следующее постановление правительства от 18 августа 1954 года конкретизировало задачу создания атомного ледокола «Ленин» по срокам, этапам и основным исполнителям работ. Проектирование атомного ледокола возлагалось на Ленинградское ЦКБ-15 (впоследствии ЦКБ «Айсберг»). Главным конструктором ледокола был назначен В.И. Неганов. Разработка проекта атомной паропроизводящей установки (АППУ) поручалась ОКБ Горьковского завода № 92 (позднее ОКБМ). Главным конструктором АППУ был утвержден И.И. Африкантов. Научное руководство проектом ледокола возлагалось на А.П. Александрова, а ядерного реактора – на И.В. Курчатова, который позднее передал свои полномочия А.П. Александрову.

К разработке основных элементов ЯЭУ были привлечены: ОКБ-12 (системы управления и защиты реактора), СКБК Балтийского завода (парогенераторы), ВИАМ (твэлы активной зоны реактора), СКБ ЛКЗ (главные турбины), завод «Электросила» (главные турбогенераторы и электродвигатели), Калужский турбинный завод (вспомогательные турбогенераторы), ЦКБА (арматура) и др.

Строительство атомного ледокола поручили ленинградскому «Адмиралтейскому заводу». Были определены следующие основные параметры атомного ледокола: водоизмещение – 16 000 т, наибольшая длина – 134 м, ширина – 27,6 м, осадка – 9,2 м, максимальная скорость на чистой воде – 19,5 узлов, автономность плавания – 1 год. Мощность главных гребных двигателей – 44000 л.с. Использование электродвижения позволяло улучшить маневренность ледокола, что важно для форсирования тяжелых льдов, движения в составе караванов и обколки проводимых судов во льдах. Для обеспечения надежного движения судна предусматривалось повышенное резервирование систем и оборудования энергосиловой установки: три реактора, четыре главных турбогенератора, две электростанции с пятью вспомогательными турбогенераторами и резервным дизель-генератором.

Три реактора мощностью по 90 МВт обеспечивали суммарное производство 360 т/ч пара при температуре до 310ºС и давлении 28 атм. Каждый реактор имел две петли циркуляции с двумя парогенераторами, двумя циркуляционными насосами и одним аварийным насосом. Использовалась паровая система компенсации давления в первом контуре. В активной зоне реакторов применили топливо на основе диоксида урана с 5 % обогащением по урану-235.

Технический проект АППУ ОК-150 был разработан в марте 1955 года, а 17 июня 1955 года на секции ЯЭУ НТС министерства он был утвержден и рекомендован к запуску в производство.

При разработке проекта АППУ впервые решался целый ряд сложных научно-технических задач. Одной из них было существенное увеличение длительности кампании активной зоны и экономичное использование ядерного топлива. Реализация предложенного научным руководством решения о введении в активную зону выгорающих поглотителей для компенсации избыточной реактивности дала возможность увеличить кампанию активной зоны до 200 суток, а применение циркониевых сплавов в элементах конструкции зоны позволило в 1,5 раза уменьшить потребление урана по сравнению с активными зонами, где для этой цели применялись нержавеющие стали.

В качестве органов регулирования реактивности реактора вместо первоначально спроектированных погружных стержней аварийной защиты, вводимых в активную зону напором насоса, были применены стержни, перемещающиеся внутри сухих гильз и вводимые в активную зону под действием пружин. В биологической защите использовались малодефицитные и более дешевые материалы: сталь, вода, тяжелый бетон.

Большую помощь конструкторам АППУ на всех этапах проектирования установки постоянно оказывали ученые ЛИПАН: А.П. Александров, Н.С. Хлопкин, Б. Г. Пологих и др. Особенно существенной была роль академика А.П. Александрова, который к началу создания АППУ ОК-150 уже обладал большим опытом и авторитетом в атомной энергетике. Он включался в решение вопросов не только научного, но и инженерного, производственного характера. Сотрудники ЛИП АН участвовали в выполнении сложных расчетных работ, поскольку АППУ была наиболее ответственной и сложной частью всей энергетической установки и создавалась впервые при недостаточных знаниях о свойствах и особенностях работы реактора в судовых условиях.

Работы по изготовлению оборудования установки ОК-150 начались на заводе № 92 в 1955 году, получив статус задания первостепенной важности. Контроль над их выполнением осуществлял непосредственно главный конструктор ОКБ И.И. Африкантов. Ритм работы по созданию и изготовлению оборудования ОК-150 был очень напряженным. Цеха завода работали в три смены, сотрудники ОКБ – «от темна до темна», не считаясь с личным временем. После подписания рабочей документации она сразу запускалась в производство. За срыв сроков графика накладывались взыскания. Конечно, встречались ошибки, но они оперативно устранялись, так как были налажены хорошие взаимоотношения между конструкторами и технологами цехов завода.

Атомный ледокол «Ленин» был заложен на верфи «Адмиралтейский завод» в Ленинграде 27 июля 1956 года, а уже 5 декабря 1957 года ледокол был спущен на воду. В 1958-1959 гг. на нем был выполнен основной объем работ по монтажу систем и оборудования атомной установки. Самым напряженным был заключительный этап строительства, монтажа и испытаний АППУ. По мере продвижения монтажа оборудования, арматуры и трубопроводов АППУ на Адмиралтейский завод для оказания технической помощи направлялись специалисты ОКБ и завода № 92.

Четкая организация работ и самоотверженный труд многочисленных коллективов, участвовавших в создании первой АППУ, во многом способствовали своевременной, рекордной по срокам сдаче атомного ледокола «Ленин». Его постройка была завершена 12 сентября 1959 года, а 5 декабря 1959 года ледокол был передан в опытную эксплуатацию Мурманскому морскому пароходству ММФ СССР. Ледокол стал первым в мире надводным судном с атомной энергетической установкой, причем по мощности он не имел равных среди ледоколов всего мира.

С навигации 1960 года атомный ледокол «Ленин» работал в Арктике, осуществлял проводку судов на самых тяжелых участках Северного морского пути. О том, что его эксплуатация пока еще опытная, как-то сразу забыли. Он был одним из основных участников ранней проводки судов с лесом на трассе «устье реки Енисей – Баренцево море». В середине навигации ледокол работал в основном в проливе Вилькицкого, который даже летом покрыт тяжелыми льдами и освобождается от них лишь на короткое время при наличии благоприятных ветров. Большое значение имела работа атомного ледокола «Ленин» поздней осенью 1960 года при завершении навигации, когда необходимо выводить изо льдов не только обычные суда, но и суда ледового класса. Атомный ледокол «Ленин» выполнял и высокоширотные экспедиционные рейсы. В 1961 году с его борта была осуществлена высадка экспедиции научно-исследовательской дрейфующей станции «Северный полюс-10». С него неоднократно осуществлялась расстановка дрейфующих автоматических радиометеостанций по границам паковых льдов. С борта ледокола велись важные научные исследования.

За шесть навигаций работы ледокола «Ленин» с АППУ ОК-150 им была обеспечена проводка 457 судов, пройдено во льдах более 62 000 миль. Атомная энергетическая установка безотказно проработала около 26 000 часов, показав свою работоспособность в самых тяжелых условиях эксплуатации – при порывистой качке на волнении, ударах судна о лед и частых изменениях нагрузки. Опыт ее создания и эксплуатации дал ценный материал для дальнейшего совершенствования атомных судовых установок. В частности, была выявлена возможность существенных упрощений технологической схемы и конструкции установки, сокращения количества арматуры, систем контроля и т.д. Надежность и устойчивость работы реакторов с большими возможностями саморегулирования оказались выше, чем предполагалось. Из этого был сделан вывод, что на ледоколе без ущерба для живучести ЯЭУ можно ограничиться двумя и даже одним реактором вместо трех. Кроме того, свойство саморегулирования реактора, в свою очередь, позволило в дальнейшем отказаться от его автоматического регулирования в новых установках.

В процессе эксплуатации проявились и некоторые недостатки в конструкции первой установки, в первую очередь – недостаточная надежность отдельных видов оборудования, низкая ремонтопригодность и др.

Главный же итог эксплуатации первой АППУ ледокола «Ленин» состоял в том, что была в принципе подтверждена возможность создания судовых атомных энергоустановок, их высокая безопасность и эффективность. Очень удачно была выбрана сама область применения ядерной энергии – мощные линейные ледоколы, где уникальные свойства атомного энергоисточника давали наиболее осязаемые, бесспорные преимущества перед традиционными решениями, в том числе по безопасности и экономическим показателям.

В отличие от ледокола «Ленин», созданное приблизительно в то же время в США грузо-пассажирское судно «Саванна» с атомной энергетической установкой имело сугубо опытное назначение. Его эксплуатация решала ограниченную задачу – продемонстрировать работоспособность и безопасность атомного судна. Она не показала каких-либо очевидных экономических или иных преимуществ перед традиционными судами того же назначения. Судно эксплуатировалось с 1962 по 1969 гг. и после завершения намеченной программы испытаний было списано (переоборудовано в плавучий музей), оставшись рядовым эпизодом в атомной программе США. Дальнейшего развития гражданское атомное судостроение в этой стране не получило. В СССР, напротив, создание первого атомного ледокола положило начало развитию новой высокотехнологичной отрасли производства – атомного судостроения – и появлению, в конечном счете, целого флота атомных судов.

После сдачи в эксплуатацию атомного ледокола «Ленин» указом Президиума Верховного Совета СССР от 14 мая 1960 года за создание атомной установки для этого судна и за заслуги в деле развития отечественного реакторостроения ОКБ завода № 92 было награждено орденом Ленина. Этим орденом были награждены также ЦКБ-15 и Адмиралтейский завод МСП СССР. Научному руководителю работ А.П. Александрову, главному конструктору ледокола В.И. Неганову, главному конструктору АППУ И.И. Африкантову и слесарю завода № 92 С.Д. Кузнецову было присвоено звание Героя Социалистического Труда. Две группы специалистов (всего 12 человек) были удостоены Ленинской премии, в том числе – ведущие специалисты ОКБ Н.М. Царев, В.И. Ширяев, Д.В. Каганов и А.М. Шаматов. Кроме того, большая группа конструкторов, расчетчиков, технологов ОКБ (практически все участвовавшие в разработке проекта установки ОК-150), а также значительное число рабочих, ИТР и руководители завода № 92 были отмечены орденами и медалями.

Учитывая положительные результаты эксплуатации атомного ледокола «Ленин» в 1960-1963 гг. и важную народнохозяйственную роль, которую играют ледоколы в развитии отдаленных районов Крайнего Севера, правительством страны в 1964 году были приняты два постановления, предусматривающих проектирование и постройку серии новых атомных ледоколов проекта 1052. Постановления определяли порядок проектирования и поставки оборудования на головной атомный ледокол этой серии.

На основании этих постановлений ЦКБ «Айсберг» разработало техническое задание на реакторную установку, а ОКБМ разослало всем заинтересованным предприятиям и организациям контрагентские карточки с целью получения согласия на разработку и изготовление составных частей паропроизводящей установки. Основное оборудование и системы новой АППУ разрабатывали ОКБМ и ЦКБ «Айсберг».

В соответствии с техническим заданием на реакторную установку для атомных ледоколов новой серии ОКБМ выполнило предэскизные проработки пяти вариантов установки и «Обоснование выбора АППУ для атомных ледоколов проекта 1052».

В 1966 году закончилась шестая навигация атомного ледокола «Ленин» с реакторной установкой ОК-150. К этому времени основное оборудование установки выработало свой ресурс. Кроме того, появилась течь в корпусе одного из реакторов. Однако остальное оборудование главной энергетической установки и судовые конструкции находились в удовлетворительном состоянии и могли работать еще длительное время при условии восстановления работоспособности АППУ.

Окончание разработки эскизного проекта АППУ ОК-900 дало основание специалистам различных ведомств поднять вопрос о замене выработавшей свой ресурс АППУ этого ледокола на новую установку ОК-900. С этой целью в ОКБМ были выполнены проработки компоновки установки ОК-900 в габаритах реакторного отсека ледокола «Ленин». Один из вариантов удачно «вписался» в отведенные для установки помещения. Главный конструктор АППУ И.И. Африкантов, оценив преимущества этой идеи, добился поддержки предложенного варианта ремонта ледокола в МСМ. После этого первый зам. министра среднего машиностроения А.М. Петросьянц поручил ОКБМ разработать подробные материалы (расчеты, графики, демонстрационные чертежи и др.) по замене установки, по срокам и стоимости выполнения работ, по технологии демонтажа и монтажа оборудования и по заводам-изготовителям оборудования АППУ ОК-900.

Технический проект АППУ был разработан в конце 1966 года под научным руководством ИАЭ им. Курчатова и при участии ЦКБ «Айсберг», ИАТ АН и контрагентов. В новой реакторной установке были также использованы корпусные реакторы водо-водяного типа. Число реакторов сокращено с трех до двух, так как надежность их, по данным эксплуатации первой установки ледокола, оказалась выше первоначально ожидаемой. Два реактора вполне обеспечивают ледоколу выход изо льдов и возвращение на базу при отказе какого-либо оборудования. В несколько раз был увеличен энергозапас активных зон, а их физические параметры и характеристики контура изменены таким образом, чтобы улучшить свойства саморегулирования реакторной установки.

Существенно увеличивался ресурс всего оборудования, упрощалась конструкция 1-го контура за счет сокращения магистралей и устранения арматуры на них. Установка была более приспособлена к ремонтам за счет улучшения доступа к оборудованию, вертикального исполнения механизмов, сосредоточения основных съемных частей в аппаратном помещении, обслуживаемом передвижным краном. АППУ оснащалась комплексной системой автоматики, что освобождало личный состав от постоянных вахт в ее помещениях. Благодаря всему этому экипаж был сокращен на 30 %, стоимость 1 МВт·ч энергии была снижена в два раза, а объем ремонтных работ – в четыре раза.

Учитывая, что постановлением правительства по проекту 1052 не предусматривалась отработка установки на ее наземном прототипе, а комплексные испытания АППУ предполагалось провести в ходе швартовных испытаний головного ледокола этого проекта, применение установки ОК-900 на атомном ледоколе «Ленин» позволяло проверить все принятые схемные и конструкторские решения по новой установке в реальных условиях, отработать системы и оборудование перед запуском их в серийное производство для ледоколов проекта 1052.

Работы по замене АППУ ОК-150 на установку ОК-900 проводились судоремонтным заводом «Звездочка» в г. Северодвинске.

16 марта 1970 года начались заводские швартовные испытания модернизированной установки атомно­го ледокола «Ленин». 20 апреля 1970 года межведомственная комиссия приступила к работе. Она дала высокую оценку качеству монтажа установки ОК-900, механизмов, агрегатов, систем комплексной автоматизации и другим работам, выполненным заводом «Звездоч­ка» и его контрагентами.

23 апреля 1970 г. в 2 часа 30 минут был осуществлен пуск реактора № 2 установки левого борта, а 1 мая 1970 г. – физпуск реактора № 1 установки правого борта. Вывод реакторов на энергетический уровень мощности состоялся 4 мая и 29 апреля 1970 г. (№ 1 и № 2 соответственно). После этого установка ОК-900 начала свою долгую и успешную работу, которая продолжалась вплоть до вывода атомного ледокола «Ленин» из эксплуатации.

Указом Президиума Верховного Совета СССР от 10 апреля 1974 года атомный ледокол «Ленин» за большой вклад в обеспечение арктических перевозок народно-хозяйственных грузов и использование атомной энергии в мирных целях был награжден орденом Ленина. Бессменному капитану ледокола Б.М. Соколову, сменившему ушедшего на пенсию первого капитана ледокола «Ленин» П.А. Пономарева, почетному работнику морского флота, почетному полярнику были вручены ордена Ленина и Октябрьской революции, а в 1981 году было присвоено звание Героя Социалистического Труда.

Несмотря на то, что системы и оборудование АППУ ОК-900 работали надежно, без отказов, начиная с 1984 года атомный ледокол «Ленин» эксплуатировался только на трассе Мурманск – остров Диксон в течение июня-декабря, т. е. в наиболее благоприятных ледовых условиях. Это было вызвано ухудшившимся состоянием корпусных и внутрикорпусных конструкций судна, поскольку проектный ресурс корпуса ледокола – 25 лет – был уже выработан. В конце 1989 года по совокупности показателей состояния корпусных и судовых конструкций было принято решение о прекращении эксплуатации ледокола.

Еще несколько лет назад Балтийский завод в Санкт-Петербурге испытывал серьезные трудности и был на грани остановки, а этим летом со стапелей предприятия был спущен на воду корпус новейшего атомного ледокола «Арктика» — тезки ушедшего на покой прославленного советского корабля. Это новейшее судно с двухреакторной ядерной установкой сконструировано двухосадочным, то есть сможет осуществлять проводку транспортных судов как на глубоководных, так и мелководных участках Северного морского пути. Однако кроме атомных левиафанов вроде «Арктики» и его грядущих систершипов «Сибири» и «Урала», в наших высоких широтах востребованы и не столь мощные суда более скромных размеров. У этих ледоколов тоже есть свои задачи.

Ледоколу тесно

Словосочетание «скромные размеры» — последнее, что приходит в голову в цеху Выборгского судостроительного завода, где происходит монтаж блоков будущего ледокола. Огромные охристого цвета конструкции высотой с трех-четырехэтажный дом уходят под самый потолок полутемного заводского помещения. Временами то тут, то там вспыхивает голубоватое пламя сварки. Новая продукция ВСЗ не очень вписывается в старые габариты предприятия. «Нам пришлось переделать всю логистическую цепочку производства, — говорит Валерий Шорин, заслуженный работник предприятия, старший специалист по бизнес-проектам ВСЗ. — Раньше корпуса судов собирали на стапеле, а затем они поступали в док-камеру, которая заполнялась водой. Вода опускалась, оставляя корабль в специальном канале, через который открывался выход в море. Теперь это невозможно. Камера способна принять суда не шире 18 м».

Ведется строительство многофункционального ледокольного судна обеспечения для проводки нефтеналивных судов в Обской губе.

Сейчас на ВСЗ заканчивают строительство дизель-электрического ледокола «Новороссийск», относящегося к серии 21900 М. Два систершипа — «Владивосток» и «Мурманск» уже переданы заказчику, в качестве которого выступает «Росморпорт». Это, конечно, не суперсилачи типа «Арктики» (60 МВт), но энерговооруженность кораблей проекта 21900 М тоже впечатляет — 18 МВт. Длина ледокола — 119,4 м, ширина — 27,5. Док-камера по‑прежнему на месте. Ее серые бетонные стены, в швах которых поселилась мелкая растительность, теперь гостеприимно принимают на ремонт заводской буксир и другие не слишком габаритные суда. Ледокол туда уже не поместится. Вместо возведения второй, более широкой камеры на заводе нашли иное решение. За десять месяцев была построена баржа «Атлант», внушительных размеров сооружение длиной 135 и шириной 35 м. Баржа представляет собой плавучую площадку, по углам которой возвышаются технологические башни белого цвета — на них нанесена разметка. Теперь готовые блоки доставляются на баржу из цеха на сверхмощных трейлерах (самый большой из них способен перевозить детали массой до 300 т). На «Атланте» происходит сборка корпуса, и, как только он будет готов к спуску на воду, баржу отводят буксиром на глубокое место в море и заполняют водой ее балластные камеры. Площадка уходит под воду, а глубина ее погружения отслеживается как раз по меткам на технологических башнях. Будущее судно оказывается на плаву. Его отводят к пристани, после чего работы продолжаются. Баржа освобождается для нового корабля.


Уже спущенный на воду ледокол «Новороссийск» — последний из трех ледоколов проекта 21900 М, заказанных «Росморпортом».

Набегом против льдов

Что делает ледокол ледоколом? В принципе, ломать лед может любое судно, даже весельная лодка. Вопрос лишь в том, какой толщины этот лед. В Морском регистре существует классификация судов, которые имеют специальные свойства для преодоления льдов. Самая «слабая» категория — это Ice 1−3 (неарктические суда), затем следует Arc 6−9 (арктические суда). Но только корабли, попадающие под категорию Icebreaker, могут с полным правом считаться ледоколами. В категории четыре класса. Высший класс — девятый — принадлежит атомным ледоколам, которые способны непрерывным ходом преодолевать поле ровного льда толщиной до 2,5 м. А если лед толще? Такое вполне может быть в постоянно замерзших арктических морях, где лед не тает по весне, а нарастает годами. Осложняют прохождение и торосы. В этом случае от ломки льда непрерывным ходом приходится отказываться. Если ледоколу не хватает мощности для преодоления льдов, используется методика «набегов». Судно отходит от препятствия на несколько корпусов назад, а затем снова устремляется вперед и «с разбега» вскакивает на льдину. Также существует метод ломки льда кормой, куда для увеличения массы, воздействующей на лед, перекачивается балластная вода из других частей корпуса. Возможен и обратный вариант, когда вода перекачивается в нос судна. Или в резервуар на одном из бортов. Это работа креновой и дифферентной систем, помогающих ледоколу ломать лед и не застревать в проделанном канале. Четвертый метод доступен лишь уникальному в своем роде первому в мире асимметричному ледоколу «Балтика», который за счет нестандартной формы корпуса может двигаться боком, ломая при этом лед и образуя канал такой ширины, который прочим ледоколам недоступен.


Два ледокола — «Москва» и «Санкт-Петербург», построенные на Балтийском заводе (Санкт-Петербург) в рамках проекта 21900, относились к классу Icebreaker 6. Модернизированные ледоколы проекта 21900 М, выпуск которых освоил ВСЗ, усилены и доработаны до класса Icebreaker 7. При движении непрерывным ходом они способны ломать лед толщиной 1,5−1,6 м, а при использовании кормы им покоряется толщина 1,3 м. Это значит, что достраиваемый сейчас «Новороссийск» сможет работать не только на Балтике, где толщина льда практически никогда не превышает 90 см, но и в арктических морях — правда, преимущественно в весенне-летний период.


Вот из таких огромных блоков на барже «Атлант» собирают корпуса ледоколов на Выборгском судостроительном заводе, входящем в Объединенную судостроительную корпорацию. Как только корпус готов, его спускают на воду, и достройка судна продолжается.

Качка на чистой воде

При том что ледоколы проекта 21900 М не имеют тех возможностей, которые есть у судов класса Icebreaker 9, конструктивно их многое роднит, так как классическая конструкция ледокола уже давно придумана и отработана. «По форме корпус ледокола похож на яйцо. — говорит Борис Кондрашов, капитан буксира ВСЗ, заместитель капитана завода. — На нем снизу почти нет выступающих частей. Такая форма позволяет эффективно расталкивать сломанный усиленным форштевнем лед, уводить обломки льдин вниз, под лед, обрамляющий канал. Но с этой формой связана одна особенность ледоколов: на чистой воде судно испытывает мощную качку даже от небольшой волны. В то же время при прохождении ледяных полей корпус судна занимает стабильное положение». Ледовое поле, по которому движется ледокол, не стоит на месте. Под воздействием течения или ветра оно может приходить в движение и напирать на борт ледокола. Сопротивляться давлению огромной массы крайне тяжело, остановить ее невозможно. Известны случаи, когда лед буквально наползал на палубу ледокола. Но форма корпуса и усиленный ледовый пояс, проходящий в районе ватерлинии, не позволяют льду раздавить судно, хотя большие вмятины глубиной до полуметра на бортах остаются нередко.


1. В штатном режиме ледокол ломает лед, двигаясь непрерывным ходом. Судно рассекает лед усиленным форштевнем и раздвигает льдины носом особой округлой формы. 2. Если ледоколу встречается лед, для ломки которого непрерывным ходом судну не хватает мощности, используется метод набегов. Ледокол отходит назад, затем с разбегу наскакивает на льдину и давит ее своим весом. 3. Еще один вариант борьбы с толстым льдом — движение кормой.

Изменения, внесенные в модифицированную версию ледокола 21900, коснулись, в частности, и ледового пояса. Он усилен дополнительным 5-мм слоем нержавеющей стали. Доработке подверглись и другие узлы. В отличие от классических судов с гребными винтами, ледоколы проекта 21900 М оснащены двумя винторулевыми колонками. Это не новомодные азиподы, в гондоле каждого из которых помещается электрический двигатель, но их функциональный аналог. Колонки могут поворачиваться на 180 градусов в любую сторону, что обеспечивает судну высочайшую маневренность. В дополнение к колонкам, размещенным на корме, на носу корабля есть подруливающее устройство в виде винта в кольцевом обтекателе. Что особенно интересно, винты не только выполняют роль движителя, но и имеют достаточную прочность для того, чтобы принимать участие в борьбе со льдом. При работе кормой винты винторулевых колонок дробят лед, фрезеровать лед способно также и подруливающее устройство. Оно, кстати, имеет и еще одну функцию — откачивать воду из-подо льда, на штурм которого идет судно. Лишившись на мгновение опоры в виде водной толщи, лед легче ломается под тяжестью носа.


Новинки для Обской губы

А что будет, если ледокол типа 21900 М налетит на айсберг, подобный тому, что погубил «Титаник»? «Судно получит повреждения, но останется на плаву, — говорит Валерий Шорин. — Однако в наши дни такая ситуация маловероятна. Даже катастрофа «Титаника» стала проявлением халатности — про наличие айсбергов в районе катастрофы было известно, но капитан не снижал хода. Сейчас же поверхность океана постоянно подвергается мониторингу из космоса, и эти данные доступны в реальном времени. Кроме того, в носовой части ледоколов 21900 М находится вертолетная площадка. Взлетая с нее, корабельный вертолет может регулярно проводить ледовую разведку и определять оптимальный маршрут движения». Но может быть, пришло время заменить тяжелый и дорогой вертолет легкими дронами? «Мы не исключаем использование в будущем дронов на борту ледокола, — объясняет Валерий Шорин, — но от вертолета отказываться пока не намерены. Ведь в критической ситуации он может выступать в роли спасательного средства».

Многофункциональность — лозунг нашего времени. Ледоколы, выпускаемые на ВСЗ, способны не только прокладывать каналы во льдах, обеспечивая прохождение транспортных судов, но и участвовать в аварийно-спасательных операциях, выполнять разного рода работы в местах морской добычи углеводородов, прокладывать трубы, тушить пожары. Такая универсальность сейчас особенно востребована в районах активного хозяйственного освоения Арктики. Пока у причала достраивают «Новороссийск» — последний ледокол серии 21900 М, — на барже «Атлант» идет сборка корпуса многофункционального ледокольного судна обеспечения для работы в районе Новопортовского нефтяного месторождения на западе Обской губы. Таких кораблей будет два, оба превосходят по мощности проект 21900 М (22 МВт против 16) и принадлежат к классу Icebreaker 8, то есть смогут взламывать непрерывным ходом льды до 2 м толщиной и вести за собой нефтеналивные суда. Ледокольные суда рассчитаны на работу при температурах до -50°С, то есть выдержат самые суровые арктические условия. Корабли смогут выполнять множество функций вплоть до размещения на борту медицинского стационара.


Там же, на Обской губе, реализуется крупный международный проект по производству сжиженного природного газа — «Ямал СПГ». Танкеры с «голубым топливом» будут предназначаться преимущественно европейским потребителям. Эти танкеры ледового класса строятся на верфях Японии и Южной Кореи, но проводить их во льдах предстоит ледокольным судам российского производства. Контракт на строительство двух ледоколов для «Ямал-СПГ» уже подписан Выборгским судостроительным заводом.

Чтобы дополнить картину современного российского ледоколостроения, стоит упомянуть и еще об одной ожидающейся вскоре новинке — самом мощном в мире неатомном ледоколе. Судно «Виктор Черномырдин», которое строится на Балтийском заводе по заказу «Росморпорта», будет обладать мощностью 25 МВт и сможет, двигаясь непрерывным ходом назад или вперед, ломать льды толщиной до двух метров.